Cover image for Microfluidics for Biotechnology.
Microfluidics for Biotechnology.
Title:
Microfluidics for Biotechnology.
Author:
Berthier, Jean.
ISBN:
9781596934443
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (502 pages)
Contents:
Microfluidics for Biotechnology Second Edition -- Contents -- Preface -- Acknowledgements -- Chapter 1 Dimensionless Numbers in Microfluidics -- 1.1 Introduction -- 1.2 Microfluidic Scales -- 1.3 Buckingham's Pi Theorem -- 1.4 Scaling Numbers and Characteristic Scales -- 1.4.1 Micro- to Nanoscales -- 1.4.2 Hydrodynamic Characteristic Times -- 1.4.3 Newtonian Fluids -- 1.4.4 Non-Newtonian Fluids -- 1.4.5 Droplets and Digital Microfluidics -- 1.4.6 Multiphysics -- 1.4.7 Specific Dimensionless Numbers and Composite Groups -- References -- Chapter 2 Microflows -- 2.1 Introduction -- 2.1.1 On the Importance of Microfluidics in Biotechnology -- 2.1.2 From Single Continuous Flow to Droplets -- 2.2 Single-Phase Microflows -- 2.2.1 Navier-Stokes (NS) Equations -- 2.2.2 Non-Newtonian Rheology -- 2.2.3 Laminarity of Microflows -- 2.2.4 Stokes Equation -- 2.2.5 Hagen-Poiseuille Flow -- 2.2.6 Pressure Drop and Friction Factor -- 2.2.7 Bernoulli's Approach -- 2.2.8 Modeling: Lumped Parameters Model -- 2.2.9 Microfluidic Networks: Worked Example 1-Microfluidic Flow Inside a Microneedle -- 2.2.10 Microfluidic Networks: Worked Example 2-Plasma Extraction from Blood -- 2.2.11 Hydrodynamic Entrance Length: Establishment of the Flow -- 2.2.12 Distributing a Uniform Flow into a Microchamber -- 2.2.13 The Example of a Protein Reactor -- 2.2.14 Recirculation Regions -- 2.2.15 Inertial Effects at Medium Reynolds Numbers: Dean Flow -- 2.2.16 Microflows in Flat Channels: Helle-Shaw Flows -- 2.3 Conclusion -- References -- Chapter 3 Interfaces, Capillarity, and Microdrops -- 3.1 Introduction -- 3.2 Interfaces and Surface Tension -- 3.2.1 The Notion of Interface -- 3.2.2 Surface Tension -- 3.3 Laplace Law and Applications -- 3.3.1 Curvature Radius and Laplace's Law -- 3.3.2 Examples of the Application of Laplace's Law -- 3.4 Partial or Total Wetting.

3.5 Contact Angle: Young's Law -- 3.5.1 Young's Law -- 3.5.2 Young's Law for Two Liquids and a Solid -- 3.5.3 Generalization of Young's Law-Neumann's Construction -- 3.6 Capillary Force and Force on a Triple Line -- 3.6.1 Introduction -- 3.6.2 Capillary Force Between Two Parallel Plates -- 3.6.3 Capillary Rise in a Tube-Jurin's Law -- 3.6.4 Capillary Rise Between Two Parallel Vertical Plates -- 3.6.5 Capillary Pumping -- 3.6.6 Force on a Triple Line -- 3.6.7 Examples of Capillary Forces in Microsystems -- 3.7 Pinning and Canthotaxis -- 3.7.1 Theory -- 3.7.2 Pinning of an Interface Between Pillars -- 3.7.3 Droplet Pinning on a Surface Defect -- 3.7.4 Pinning of a Microdroplet-Quadruple Contact Line -- 3.7.5 Pinning in Microwells -- 3.8 Microdrops -- 3.8.1 Shape of Microdrops -- 3.8.2 Drops on Inhomogeneous Surfaces -- 3.9 Conclusions -- References -- Chapter 4 Digital, Two-Phase, and Droplet Microfluidics -- 4.1 Introduction -- 4.2 Digital Microfluidics -- 4.2.1 Introduction -- 4.2.2 Theory of Electrowetting -- 4.2.3 EWOD Microsystems -- 4.2.4 Conclusion -- 4.3 Multiphase Microflows -- 4.3.1 Introduction -- 4.3.2 Droplet and Plug Flow in Microchannels -- 4.3.3 Dynamic Contact Angle -- 4.3.4 Hysteresis of the Static Contact Angle -- 4.3.5 Interface and Meniscus -- 4.3.6 Microflow Blocked by Plugs -- 4.3.7 Two-Phase Flow Pressure Drop -- 4.3.8 Microbubbles -- 4.3.9 Liquid-Liquid Extraction -- 4.3.10 Example of Three-Phase Flow in a Microchannel: Droplet Engulfment -- 4.4 Droplet Microfluidics -- 4.4.1 Introduction: Flow Focusing Devices (FFD) and T-Junctions -- 4.4.2 T-Junctions -- 4.4.3 Micro Flow Focusing Devices (MFFD) -- 4.4.4 Highly Viscous Fluids-Encapsulation -- 4.5 Conclusions -- References -- Chapter 5 Diffusion of Biochemical Species -- 5.1 Introduction -- 5.2 Brownian Motion -- 5.3 Macroscopic Approach: Concentration -- 5.3.1 Fick's Law.

5.3.2 Concentration Equation -- 5.3.3 Spreading from a Point Source - 1D Case -- 5.3.4 Semi-Infinite Space: Ilkovic's Solution -- 5.3.5 Example of Diffusion Between Two Plates -- 5.3.6 Radial Diffusion -- 5.3.7 Diffusion Inside a Microchamber -- 5.3.8 Diffusion Inside a Capillary: The Example of Simultaneous PCRs -- 5.3.9 Particle Size Limit: Diffusion or Sedimentation -- 5.4 Microscopic (Discrete) Approach -- 5.4.1 Monte Carlo Method -- 5.4.2 Diffusion in Confined Volumes: Drug Diffusion in the Human Body -- 5.5 Conclusion -- References -- Chapter 6 Transport of Biochemical Species andCellular Microfluidics -- 6.1 Introduction -- 6.2 Advection-Diffusion Equation -- 6.2.1 Governing Equation for Transport -- 6.2.3 Boundary Conditions -- 6.2.4 Coupling with Hydrodynamics -- 6.2.5 Physical Properties as a Function of the Concentration of the Species -- 6.2.6 Dimensional Analysis and Peclet Number -- 6.2.7 Concentration Boundary Layer -- 6.2.8 Numerical Considerations -- 6.2.9 Taylor-Aris Approach -- 6.2.10 Distance of Capture in a Capillary -- 6.2.11 Determination of the Diffusion Coefficient -- 6.3 Trajectory Calculation -- 6.3.1 Trajectories of Particles in a Microflow -- 6.3.2 Ballistic Random Walk (BRW) -- 6.4 Separation/Purification of Bioparticles -- 6.4.1 The Principle of Field Flow Fractionation (FFF) -- 6.4.2 Chromatography Columns -- 6.5 Cellular Microfluidics -- 6.5.1 Flow Focusing -- 6.5.2 Pinched Channel Microsystems -- 6.5.3 Deterministic Arrays-Deterministic Lateral Displacement (DLD) -- 6.5.4 Lift Forces on Particles -- 6.5.5 Dean Flows in Curved Microchannels -- 6.5.6 Bifurcation Channels -- 6.5.7 Recirculation Chambers -- 6.6 Conclusion -- References -- Chapter 7 Biochemical Reactions in Biochips -- 7.1 Introduction -- 7.2 From the Principle of Biorecognition to the Development of Biochips -- 7.2.1 Introduction to Biorecognition.

7.2.2 Biorecognition -- 7.2.3 Biochip Technology -- 7.3 Biochemical Reactions -- 7.3.1 Rate of Reaction -- 7.3.2 Michaelis Menten Model -- 7.3.3 Adsorption and the Langmuir Model -- 7.3.4 Biological Reactions -- 7.4 Biochemical Reactions in Microsystems -- 7.4.1 Homogeneous Reactions -- 7.4.2 Heterogeneous Reactions -- 7.5 Conclusion -- References -- Chapter 8 Experimental Approaches to Microparticles-Based Assays -- 8.1 A Few Biological Targets -- 8.1.1 Biopolymers -- 8.1.2 Some Aspects of Cells -- 8.2 Microparticles as Biotechnological Tools -- 8.2.1 Fluorescent Particles -- 8.2.2 Other Micro- and Nanoparticles -- 8.2.3 Chemical Modification of Surfaces -- 8.3 Experimental Methods of Characterization -- 8.3.1 Microscopies -- 8.3.2 Physical Characterization: Light Scattering -- 8.3.3 Biochemical Characterization -- 8.4 Molecular Micromanipulation -- 8.4.1 Force Measurements -- 8.4.2 Optical Tweezers -- 8.4.3 Flow-Based Techniques -- References -- Selected Bibliography -- Chapter 9 Magnetic Particles in Biotechnology -- 9.1 Introduction -- 9.1.1 The Principle of Functional Magnetic Beads -- 9.1.2 Composition and Fabrication of Magnetic Beads -- 9.1.3 An Example of Displacement by Magnetic Beads for Biodetection -- 9.1.4 The Question of the Size of the Magnetic Beads -- 9.2 Characterization of Magnetic Beads -- 9.2.1 Paramagnetic Beads -- 9.2.2 Ferromagnetic Microparticles -- 9.3 Magnetic Force -- 9.3.1 Paramagnetic Microparticles -- 9.3.2 Ferromagnetic Microparticles -- 9.4 Deterministic Trajectory -- 9.5 Example of a Ferromagnetic Rod -- 9.5.1 Governing Equations -- 9.5.2 Analytical Solution for the Magnetic Field -- 9.5.3 Trajectories (Carrier Fluid at Rest) -- 9.5.4 Trajectories (Carrier Fluid Convection) -- 9.6 Magnetic Repulsion -- 9.7 Magnetic Beads in EWOD Microsystems -- 9.8 Example of a Separation Column -- 9.9 Concentration Approach.

9.10 Example of MFFF -- 9.10.1 Trajectories -- 9.10.2 Concentration of Magnetic Beads -- 9.10.3 Results and Comparison -- 9.11 Assembly of Magnetic Beads-Magnetic Beads Chains -- 9.12 Magnetic Fluids -- 9.12.1 Introduction -- 9.12.2 Magnetic Force on a Plug of Ferrofluid -- 9.12.3 Notes -- 9.13 Magnetic Micromembranes -- 9.13.1 Principle -- 9.13.2 Deflection of Paramagnetic Micromembranes -- 9.13.3 Oscillation of Magnetic Membranes -- 9.14 Conclusion -- References -- Chapter 10 Micromanipulations and Separations Using Electric Fields -- 10.1 Action of a DC Electric Field on a Particle: Electrophoresis -- 10.1.1 The Debye Layer -- 10.1.2 Electro-Osmosis -- 10.1.3 Electrophoresis of a Charged Particle -- 10.1.4 Electrophoresis of DNA -- 10.1.5 Electrophoresis of Proteins -- 10.1.6 Cell Electrophoresis -- 10.2 Dielectrophoresis -- 10.2.1 Theoretical Basis -- 10.2.2 The Clausius-Mossoti Factor -- 10.2.3 Optimization of the Electric Field -- 10.2.4 Characterization of Particles -- 10.2.5 Electrorotation and Traveling Wave -- 10.2.6 Instabilities -- 10.2.7 DEP-Based Separations -- References -- Chapter 11 Conclusion -- List of Symbols -- About the Authors -- Index.
Abstract:
The application of microfluidics to biotechnology is an exciting new area that has already begun to revolutionize how researchers study and manipulate macromolecules like DNA, proteins and cells in vitro and within living organisms. Now in a newly revised and expanded second edition, the Artech House bestseller, Microfluidics for Biotechnology brings you to the cutting edge of this burgeoning field. Among the numerous updates, the second edition features three entirely new chapters on: non-dimensional numbers in microfluidics; interface, capillarity and microdrops; and digital , two-phase and droplet microfluidics.Presenting an enlightening balance of numerical approaches, theory, and experimental examples, this book provides a detailed look at the mechanical behavior of the different types of micro/nano particles and macromolecules that are used in biotechnology. You gain a solid understanding of microfluidics theory and the mechanics of microflows and microdrops. The book examines the diffusion of species and nanoparticles, including continuous flow and discrete Monte-Carlo methods.This unique volume describes the transport and dispersion of biochemical species and particles. You learn how to model biochemical reactions, including DNA hybridization and enzymatic reactions. Moreover, the book helps you master the theory, applications, and modeling of magnetic beads behavior and provides an overview of self-assembly and magnetic composite. Other key topics include the electric manipulation of micro/nanoparticles and macromolecules and the experimental aspects of biological macromolecule manipulation.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: