Cover image for Physics of Microdroplets.
Physics of Microdroplets.
Title:
Physics of Microdroplets.
Author:
Berthier, Jean.
ISBN:
9781118401309
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (392 pages)
Contents:
The Physics of Microdroplets -- Contents -- Acknowledgements -- Preface -- Introduction -- 1 Fundamentals of Capillarity -- 1.1 Abstract -- 1.2 Interfaces and Surface Tension -- 1.2.1 The Notion of Interface -- 1.2.2 The Effect of Temperature on Surface Tension -- 1.2.3 The Effect of Surfactants -- 1.2.4 Surface Tension of a Fluid Containing Particles -- 1.3 Laplace's Law and Applications -- 1.3.1 Curvature and Radius of Curvature -- 1.3.2 Derivation of Laplace's Law -- 1.3.3 Examples of Application of Laplace's Law -- 1.3.3.1 Pressure in a Bubble -- 1.3.3.2 Liquid Transfer From a Smaller Drop to a Bigger Drop -- 1.3.3.3 Precursor Film and Coarsening -- 1.3.3.4 Pressure in Droplets Constrained Between Two Parallel Plates -- 1.3.3.5 Zero Pressure Surfaces: Example of a Meniscus on a Rod -- 1.3.3.6 Self Motion of a Liquid Plug Between Two Non-Parallel Wetting Plates -- 1.3.3.7 Laplace's Law in Medicine: Normal and Shear Stress in Blood Vessels -- 1.3.3.7.1 Shear Stress in Vascular Networks -- 1.3.3.7.2 Normal Stress in Vascular Networks -- 1.3.3.8 Laplace's Law in Medicine: the Example of Lung Alveoli -- 1.3.3.9 Laplace's Law in a Gravity Field -- 1.3.3.10 Generalization: Laplace's Law in Presence of a Flow Field -- 1.3.4 Wetting - Partial or Total Wetting -- 1.3.5 Contact Angle - Young's Law -- 1.3.5.1 Young's Law -- 1.3.5.2 Droplet on a Cantilever -- 1.3.5.3 Contact Between Three Liquids - Neumann's Construction -- 1.3.5.4 Nanobubbles on Hydrophobic Walls, Line Tension and the Modified Young Law -- 1.3.6 Work of Adhesion, Work of Cohesion and the Young-Dupre Equation -- 1.3.6.1 Work of Adhesion -- 1.3.6.2 Work of Cohesion -- 1.3.6.3 The Young-Dupre Equation -- 1.3.7 Capillary Force, Force on a Triple Line -- 1.3.7.1 Introduction -- 1.3.7.2 Capillary Force Between Two Parallel Plates -- 1.3.7.3 Capillary Rise in a Tube.

1.3.7.4 Capillary Rise Between Two Parallel Vertical Plates -- 1.3.7.5 Capillary Rise in a Pipette -- 1.3.7.6 Force on a Triple Line -- 1.3.7.7 Examples of Capillary Forces in Microsystems -- 1.4 Measuring the Surface Tension of Liquids -- 1.4.1 Using Pressure (Bubble Pressure Method) -- 1.4.1.1 Using the Capillary Rise on a Plate - Wilhelmy Plate -- 1.4.2 Using Gravity: the Pendant Drop Method -- 1.4.2.1 Bond Number -- 1.4.2.2 Method -- 1.4.2.3 Using Shear Stress in a Microflow -- 1.4.3 Surface Free Energy -- 1.4.3.1 Introduction -- 1.4.3.2 Method of Good-Girifalco -- 1.4.3.3 Fowkes Method -- 1.4.3.4 Critical Surface Tension and Surface Free Energy -- 1.4.3.4.1 Zisman Plot -- 1.4.3.4.2 Disjoining Pressure -- 1.5 Minimization of the Surface Energy and Minimal Surfaces -- 1.5.1 Minimization of the Surface Energy -- 1.5.2 Conclusion -- 1.6 References -- 2 Minimal Energy and Stability Rubrics -- 2.1 Abstract -- 2.2 Spherical Shapes as Energy Minimizers -- 2.2.1 The Sphere Theorems -- 2.2.2 Sphere -- 2.2.3 Spherical Cap on a Plane -- 2.2.4 Drop Between Parallel Plates -- 2.2.5 Droplet in a Wedge -- 2.2.6 Droplet on an Exterior Corner -- 2.3 Symmetrization and the Rouloids -- 2.3.1 Steiner Symmetrization -- 2.3.2 Rouloids -- 2.3.2.1 The Sphere -- 2.3.2.2 The Cylinder -- 2.3.2.3 The Catenoid -- 2.3.2.4 Unduloids -- 2.3.2.5 Nodoids -- 2.3.3 Rouloid Summary -- 2.4 Increasing Pressure and Stability -- 2.4.1 Wedge -- 2.4.2 In a Square -- 2.4.3 Round Well -- 2.4.4 Square Well -- 2.5 The Double-Bubble Instability -- 2.5.1 Conditions for the Double-bubble Instability -- 2.5.2 Plateau-Rayleigh Instability -- 2.5.3 Plateau-Rayleigh Instability in Corners and Grooves -- 2.5.4 Instability of a Cylinder on a Hydrophilic Strip -- 2.5.5 Double-bubble Instability in Bulging Liquid Bridge -- 2.5.6 Lower-pressure Comparison Theorem -- 2.6 Conclusion -- 2.7 References.

3 Droplets: Shape, Surface and Volume -- 3.1 Abstract -- 3.2 The Shape of Micro-drops -- 3.2.1 Sessile Droplets - the Bond Number -- 3.3 Electric Bond Number -- 3.4 Shape, Surface Area and Volume of Sessile Droplets -- 3.4.1 Height of a "Large" Droplet: Bo » 1 -- 3.4.2 Microscopic Drops: Bo « 1 -- 3.4.2.1 Shape of the Droplet -- 3.4.2.2 Volume of a Sessile Droplet -- 3.4.2.3 Surface Area of a Spherical Cap -- 3.4.2.4 Example: Measurement of the Volume of a Droplet from a Single Image (Hydrophobic Case) -- 3.4.3 Droplets Between Two Parallel Plates -- 3.4.4 Shape of a Droplet Flattened Between Two Horizontal Planes -- 3.4.5 Curvature Radius of the Free Interface -- 3.4.6 Convex Droplet Shape -- 3.4.6.1 Volume of a Droplet Flattened Between Two Parallel Planes and Having the Same Contact Angle with Both Planes (Convex Case) -- 3.4.7 Volume of a Droplet Flattened by Two Horizontal Planes with Different Contact Angles with the Two Planes (Convex Case) -- 3.4.8 Surface Area (Convex Case) -- 3.4.9 Concave Droplet Shape -- 3.4.9.1 Volume of a Droplet Flattened Between Two Parallel Planes and Having the Same Contact Angle with Both Planes (Concave Case) -- 3.4.9.2 Volume of a Droplet Flattened by Two Horizontal Planes with Different Contact Angles with the Two Planes (Concave Case) -- 3.4.9.3 Surface Area (Concave Case) -- 3.5 Conclusion -- 3.6 References -- 4 Sessile Droplets -- 4.1 Abstract -- 4.2 Droplet Self-motion Under the Effect of a Contrast or Gradient of Wettability -- 4.2.1 Drop Moving Over a Sharp Transition of Wettability -- 4.2.2 Drop Moving Uphill -- 4.2.3 Dynamic and Quasi-static Approach -- 4.2.4 Drop Moving Up a Step -- 4.2.5 Drop Moving Over a Gradient of Surface Concentration of Surfactant -- 4.2.6 Conclusion -- 4.3 Contact Angle Hysteresis -- 4.4 Pinning and Canthotaxis -- 4.4.1 Droplet Pinning on a Surface Defect.

4.4.2 Droplet Pinning on an Edge - Canthotaxis -- 4.4.3 Droplet Pinning at a Wettability Separation Line -- 4.4.4 Pinning of an Interface by Pillars -- 4.5 Sessile Droplet on a Non-ideally Planar Surface -- 4.6 Droplet on Textured or Patterned Substrates -- 4.6.1 Wenzel' s Law -- 4.6.2 Cassie-Baxter Law -- 4.6.3 Contact on Microfabricated Surfaces: the Transition Between the Wen-zel and Cassie Laws -- 4.6.3.1 Introduction -- 4.6.3.2 Contact Angle on a Microfabricated Substrate. Case of Hydrophobie Contact -- 4.6.3.3 Example of Square, Hydrophobic Micropillars -- 4.6.3.4 Wenzel-Cassie Hysteresis -- 4.6.3.5 Superhydrophobicity -- 4.6.3.6 Irregularly Textured and Fractal Surfaces -- 4.6.3.7 Hydrophilic Case -- 4.6.3.8 Simultaneous Superhydrophobic and Oleophobic Surfaces - the Concept of Omniphobicity -- 4.6.3.9 Conclusion -- 4.7 References -- 5 Droplets Between Two Non-parallel Planes: From Tapered Planes to Wedges -- 5.1 Abstract -- 5.2 Droplet Self-motion Between Two Non-parallel Planes -- 5.2.1 Identical Young Contact Angle with Both Plates -- 5.2.2 Different Young Contact Angles -- 5.2.3 Numerical Simulation - 2D and 3D Cases -- 5.2.4 A Reciprocal to the Hauksbee Problem -- 5.2.5 Example of Tapered System for Passive Pumping in Fuel Cells -- 5.2.6 Discussion -- 5.3 Droplet in a Corner -- 5.3.1 Dimensions of the Droplet and Effect of Gravity -- 5.3.2 Concus-Finn Relations -- 5.3.3 Numerical Approach -- 5.3.4 Example of a Liquid in a Micro-beaker -- 5.3.5 Extended Concus-Finn Relation -- 5.3.6 Droplet in a Wetting/Non-wetting Comer -- 5.3.7 Discussion -- 5.4 Conclusion -- 5.5 References -- 6 Microdrops in Microchannels and Microchambers -- 6.1 Abstract -- 6.2 Droplets in Micro-wells -- 6.2.1 Shape of the Liquid Surface in a Micro-well -- 6.2.2 Evaporation of Liquid in a Micro-well -- 6.2.2.1 Hydrophilic Case -- 6.2.2.2 Hydrophobic Case.

6.2.2.3 Controlling Evaporation in Microsystems -- 6.2.3 Filling a Micro-well -- 6.3 Droplets in Microchannels -- 6.3.1 Capillary, Weber and Bond Numbers -- 6.3.2 Non-wetting Droplets and Plugs -- 6.3.2.1 Silanization Surface Treatment -- 6.3.2.2 Rectangular Microchannels -- 6.3.2.3 T-shaped Microchannels - Abacus Groove -- 6.3.2.4 Plugs Slowed Down by Pillars -- 6.3.3 Wetting Droplets and Plugs -- 6.3.3.1 General Case: Contact Angle Between 45° and 135° -- 6.3.3.2 Contact Angle Smaller Than 45° -- 6.3.3.3 Contact Angle Larger Than 135° -- 6.3.4 Trains of Droplets - Compound Droplets -- 6.3.4.1 Trains Moving Inside a Microchannel -- 6.3.4.2 Packing of Droplets -- 6.4 Conclusion -- 6.5 References -- 7 Capillary Effects: Capillary Rise, Capillary Pumping, and Capillary Valve -- 7.1 Abstract -- 7.2 Capillary Rise -- 7.2.1 Cylindrical Tubes: Jurin's Law -- 7.2.2 Capillary Rise in Square Tubes -- 7.2.3 Capillary Rise on a Vertical Plate - Surface Tension Measurement by the Wilhelmy Method -- 7.2.4 Capillary Rise Between Two Parallel Vertical Plates -- 7.2.5 Capillary Rise in a Dihedral -- 7.2.6 Capillary Rise in an Array of Four Vertical Square Pillars -- 7.2.7 Comparison of Capillary Rise Between Wilhelmy Plate and Pillars -- 7.2.8 Oblique Tubes - Capillary Rise in a Pipette -- 7.3 Capillary Pumping -- 7.3.1 Principles of Capillary Pumping -- 7.3.2 Capillary Pumping and Channel Dimensions -- 7.3.3 The Dynamics of capillary Pumping: Horizontal Microchannel -- 7.3.4 The Dynamics of Capillary Pumping: General -- 7.3.5 Examples of Capillary Pumping -- 7.3.5.1 Spontaneous capillary flow in a composite channel -- 7.4 Capillary Valves -- 7.4.1 Principles of Capillary Valves -- 7.4.2 Valving Efficiency and Shape of the Orifice -- 7.4.3 Examples of Capillary Valves in Microsystems -- 7.4.3.1 Stop Valve -- 7.4.4 Delay Valves -- 7.5 Conclusions -- 7.6 References.

8 Open Microfluidics.
Abstract:
The Physics of Microdroplets gives the reader the theoretical and numerical tools to understand, explain, calculate, and predict the often nonintuitive observed behavior of droplets in microsystems. Microdrops and interfaces are now a common feature in most fluidic microsystems, from biology, to biotechnology, materials science, 3D-microelectronics, optofluidics, and mechatronics. On the other hand, the behavior of droplets and interfaces in today's microsystems is complicated and involves complex 3D geometrical considerations. From a numerical standpoint, the treatment of interfaces separating different immiscible phases is difficult. After a chapter dedicated to the general theory of wetting, this practical book successively details: The theory of 3D liquid interfaces The formulas for volume and surface of sessile and pancake droplets The behavior of sessile droplets The behavior of droplets between tapered plates and in wedges The behavior of droplets in microchannels The effect of capillarity with the analysis of capillary rise The onset of spontaneous capillary flow in open microfluidic systems The interaction between droplets, like engulfment The theory and application of electrowetting The state of the art for the approach of 3D-microelectronics using capillary alignment.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: