Cover image for Generation and Applications of Extra-Terrestrial Environments on Earth.
Generation and Applications of Extra-Terrestrial Environments on Earth.
Title:
Generation and Applications of Extra-Terrestrial Environments on Earth.
Author:
Beysens, Daniel A.
ISBN:
9788793237544
Personal Author:
Physical Description:
1 online resource (317 pages)
Series:
River Publishers Series in Standardisation
Contents:
Half Title -- River publishers series in standardisation -- Title - GenerationandApplicationsofExtra-TerrestrialEnvironmentsonEarth -- Copyright -- Contents -- Preface -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- Introduction -- 1 - The Space Environment -- Chapter_1-The Space Gravity Environment -- 1.1 Open Space -- 1.2 Satellites and Rockets -- 1.3 Typical Gravity at Some Celestial Objects -- 1.4 Conclusion -- References -- Chapter_2.Cosmos: Violent and Hostile Environment -- 2.1 Introduction -- 2.2 Beliefs and Truths -- 2.3 Where Space Begins -- 2.4 Satellite Environment -- 2.4.1 Temperature -- 2.4.2 Atmospheric Drag -- 2.4.3 Outgassing -- 2.4.4 Atomic Oxygen Oxidation -- 2.5 Conclusions -- References -- Chapter_3 Radiation, SpaceWeather -- 3.1 Facilities for Space Radiation Simulation -- 3.2 Protons -- 3.3 Neutrons -- 3.4 Heavy Ions -- 3.5 Facilities Planned -- 3.6 Conclusions -- References -- Chapter_4 Interstellar Chemistry -- References -- Chapter_5 Celestial Bodies -- 5.1 Introduction -- 5.2 General Planetary Simulation Facilities -- 5.2.1 The Centre for Astrobiology Research (CAB), Madrid, Spain -- 5.2.2 Deutsches Zentrum fur Luft-und Raumfahrt (DLR), Berlin,Germany -- 5.2.3 The Open University, Milton Keynes, UK -- 5.2.4 Mars Environmental Simulation Chamber (MESCH),Aarhus University, Denmark -- 5.2.5 The Planetary Analogues Laboratory for Light, Atmosphereand Surface Simulations (PALLAS), Utrecht University,The Netherlands -- 5.3 Mars Wind Tunnels -- 5.3.1 The Planetary Aeolian Laboratory (PAL), NASA AmesResearch Center, Moffett Field, CA, USA -- 5.3.2 The Arizona State University Vortex Generator (ASUVG),Moffett Field, CA, USA -- 5.3.3 The Aarhus Wind Tunnel Simulator (AWTS), Aarhus,Denmark -- 5.4 Instrument Testing Facilities -- 5.4.1 ChemCam Environmental Chamber.

5.4.2 SAM Environmental Chamber -- References -- 2 - Facilities to AlterWeight -- Chapter_6 Drop Towers -- 6.1 Introduction -- 6.2 Drop Tower Technologies -- 6.3 Vacuum (or Drop) Tubes -- 6.4 Experiment Inside Capsule (Drag Shield) -- 6.5 Drop Tower Systems -- 6.5.1 Guided Motion -- 6.6 Enhanced Technologies -- 6.6.1 Free Flyer System -- 6.6.2 Catapult System -- 6.6.3 Next-Generation Drop Towers -- 6.6.3.1 Ground-based facility's typical operational parameters -- 6.7 Research in Ground-Based Reduced Gravity Facilities -- 6.7.1 Cold Atoms -- 6.7.2 Combustion -- 6.7.3 Fluid Mechanics/Dynamics -- 6.7.4 Astrophysics -- 6.7.5 Material Sciences -- 6.7.6 Biology -- 6.7.7 Technology Tests -- References -- Chapter_7 Parabolic Flights -- 7.1 Introduction -- 7.2 Objectives of Parabolic Flights -- 7.3 Parabolic Flight Maneuvers -- 7.4 Large Airplanes Used for Parabolic Flights -- 7.4.1 Europe: CNES' Caravelle and CNES-ESA's Airbus A300ZERO-G -- 7.4.2 USA: NASA's KC-135, DC-9 and Zero-G Corporation -- 7.4.3 Russia: Ilyushin IL-76 MDK -- 7.5 Medium-Sized Airplanes Used for Parabolic Flights -- 7.5.1 Europe: TU Delft-NLR Cessna Citation II -- 7.5.2 Canada: CSA Falcon 20 -- 7.5.3 Japan: MU-300 and Gulfstream-II -- 7.5.4 Other Aircraft -- 7.6 Small Airplanes and Jets Used for Parabolic Flights -- 7.6.1 Switzerland: Swiss Air Force Jet Fighter F-5E -- 7.6.2 Other Aircraft -- 7.7 Conclusions -- References -- Chapter_8 Magnetic Levitation -- 8.1 Introduction -- 8.2 Static Magnetic Forces in a Continuous Medium -- 8.2.1 Magnetic Forces and Gravity, Magneto-GravitationalPotential -- 8.2.2 Magnetic Compensation Homogeneity -- 8.3 Axisymmetric Levitation Facilities -- 8.3.1 Single Solenoids -- 8.3.2 Improvement of Axisymmetric Device Performance -- 8.3.2.1 Ferromagnetic inserts -- 8.3.2.2 Multiple solenoid devices and special windings design.

8.4 Magnetic Gravity Compensation in Fluids -- 8.5 Magnetic Gravity Compensation in Biology -- Acknowledgments -- References -- Chapter_9 Electric Fields -- 9.1 Convection Analog in Microgravity -- 9.1.1 Conditions of DEP Force Domination -- 9.1.2 Equations Governing DEP-Driven TEHD Convection -- 9.2 Electric Gravity in the Conductive State for SimpleCapacitors -- 9.2.1 Linear Stability Equations and Kinetic Energy Equation -- 9.3 Results from Stability Analysis -- 9.3.1 Plane Capacitor -- 9.3.2 Cylindrical Capacitor -- 9.3.3 Spherical Shell -- 9.4 Conclusion -- Acknowledgment -- References -- Chapter_10 The Plateau Method -- 10.1 Introduction -- 10.2 Principle -- 10.3 Temperature Constraint -- 10.4 Other Constraints -- 10.5 Concluding Remarks -- References -- Chapter_11 Centrifuges -- 11.1 Introduction -- 11.2 Artifacts -- 11.2.1 Coriolis -- 11.2.2 Inertial Shear Force -- 11.2.3 Gravity Gradient -- 11.3 The Reduced Gravity Paradigm (RGP -- References -- 3 - Facilities to Mimic Micro-GravityEffects -- Chapter_12 Animals: Unloading, Casting -- 12.1 Introduction -- 12.2 Hindlimb Unloading Methodology -- 12.3 Recommendations for Conducting HindlimbUnloading Study -- 12.4 Casting, Bandaging, and Denervation -- 12.5 Conclusions -- References -- Chapter_13 Human: Bed Rest/Head-Down-Tilt/Hypokinesia -- References -- 13.1 Introduction -- 13.2 Experimental Models to MimicWeightlessness -- 13.2.1 Bed Rest or Head-Down Bed Rest? -- 13.2.2 Immersion and Dry Immersion -- 13.3 Overall Design of the Studies -- 13.3.1 Duration of the Studies -- 13.3.2 Design of the Bed-Rest Studies -- 13.3.3 Number of Volunteers -- 13.3.4 Number of Protocols -- 13.3.5 Selection Criteria -- 13.4 Directives for Bed Rest (Start and End of Bed Rest,Conditions During Bed Rest) -- 13.4.1 Respect and Control of HDT Position -- 13.4.2 Activity Monitoring of Test Subjects.

13.4.3 First Day of Bed Rest -- 13.4.4 Physiotherapy -- 13.5 Operational/Environmental Conditions -- 13.5.1 Housing Conditions and Social Environment -- 13.5.2 Sunlight Exposure, Sleep/Wake Cycles -- 13.5.3 Diet -- 13.5.4 Testing Conditions -- 13.5.5 Medications -- References -- Chapter_14 Clinostats and Other RotatingSystems-Design, Function, and Limitations -- 14.1 Introduction -- 14.2 Traditional Use of Clinostats -- 14.3 Direction of Rotation -- 14.4 Rate of Rotation -- 14.5 Fast- and Slow-Rotating Clinostats -- 14.6 The Clinostat Dimension -- 14.7 Configurations of Axes -- Acknowledgement -- References -- Chapter_15 Vibrations -- 15.1 Introduction -- 15.2 Thermovibrational Convections -- 15.3 Crystal Growth -- 15.4 Dynamic Interface Equilibrium -- References -- 4 - Other Environmental Parameters -- Chapter_16 Earth Analogues -- 16.1 Planetary Analogues -- 16.1.1 The Moon -- 16.1.2 Mars -- 16.1.3 Europa and Enceladus -- 16.1.4 Titan -- 16.2 Semipermanent Field-Testing Bases -- 16.3 Field-Testing Campaigns -- References -- Chapter_17 Isolated and Confined Environments -- Acknowledgement -- References -- 5 - Current Research in Physical Sciences -- Chapter_18 Fundamental Physics -- 18.1 Introduction -- 18.2 The Topics -- 18.3 Fundamental Physics in Space -- 18.3.1 Fundamental Issues in Soft Matter and Granular Physics -- References -- Chapter_19 Fluid Physics -- 19.1 Introduction -- 19.2 Supercritical Fluids and Critical Point Phenomena -- 19.2.1 Testing Universality -- 19.2.3 New Process of Thermalization -- 19.2.4 Supercritical Properties -- 19.2.2 Dynamics of Phase Transition -- 19.3 Heat Transfer, Boiling and Two-Phase Flow -- 19.3.1 Two-Phase Flows -- 19.3.2 Boiling and Boiling Crisis -- 19.4 Interfaces -- 19.4.1 Liquid Bridges -- 19.4.2 Marangoni Thermo-Solutal-Capillary Flows -- 19.4.3 Interfacial Transport -- 19.4.4 Foams.

19.4.5 Emulsions -- 19.4.6 Giant Fluctuations of Dissolving Interfaces -- 19.5 Measurements of Diffusion Properties -- 19.6 Vibrational and Transient Effects -- 19.6.1 Transient and Sloshing Motions -- 19.6.2 Vibrational Effects -- 19.7 Biofluids: Microfluidics of Biological Materials -- References -- Chapter_20 Combustion -- 20.1 Introduction -- 20.2 Why Combustion Is Affected by Gravity? -- 20.3 Reduced Gravity Environment for CombustionStudies -- 20.4 Conclusions -- References -- Chapter_21 Materials Science -- 21.1 Introduction -- 21.2 Scientific Challenges -- 21.3 Specifics of Low-Gravity Platforms and Facilitiesfor Materials Science -- 21.3.1 Parabolic Flights -- 21.3.2 TEXUS Sounding Rocket Processing -- 21.3.3 Long-Duration Microgravity Experiments on ISS -- 21.4 Materials Alloy Selection -- Acknowledgements -- References -- 6 - Current Research in Life Sciences -- Chapter_22 Microbiology/Astrobiology -- 22.1 Radiation Environment -- 22.2 Change in Gravity Environment -- 22.3 Space Flight Experiments and Related GroundSimulations -- References -- Chapter_23 Gravitational Cell Biology -- 23.1 Gravitational Cell Biology -- 23.2 Studies Under Simulated Microgravity -- 23.3 Effects of Simulated Microgravity on Algae,Plant Cells, and Whole Plants -- 23.4 Mammalian Cells in Simulated Microgravity -- References -- Chapter_24 Growing Plants under GeneratedExtra-Terrestrial Environments: Effectsof Altered Gravity and Radiation -- 24.1 Introduction: Plants and Space Exploration -- 24.2 Cellular and Molecular Aspects of the GravityPerception and Response in Real and SimulatedMicrogravity -- 24.2.1 Gravity Perception in Plant Roots: Gravitropism -- 24.2.2 Effects on Cell Growth and Proliferation -- 24.2.3 Effects of Gravity Alteration on Gene Expression -- 24.3 Morpho-Functional Aspects of the Plant Responseto Real and Simulated Microgravity Environments.

24.3.1 From Cell Metabolism to Organogenesis.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: