Cover image for Concepts in Thermal Physics.
Concepts in Thermal Physics.
Title:
Concepts in Thermal Physics.
Author:
Blundell, Stephen.
ISBN:
9780191524400
Personal Author:
Physical Description:
1 online resource (483 pages)
Contents:
Contents -- I: Preliminaries -- 1 Introduction -- 1.1 What is a mole? -- 1.2 The thermodynamic limit -- 1.3 The ideal gas -- 1.4 Combinatorial problems -- 1.5 Plan of the book -- Exercises -- 2 Heat -- 2.1 A definition of heat -- 2.2 Heat capacity -- Exercises -- 3 Probability -- 3.1 Discrete probability distributions -- 3.2 Continuous probability distributions -- 3.3 Linear transformation -- 3.4 Variance -- 3.5 Linear transformation and the variance -- 3.6 Independent variables -- Further reading -- Exercises -- 4 Temperature and the Boltzmann factor -- 4.1 Thermal equilibrium -- 4.2 Thermometers -- 4.3 The microstates and macrostates -- 4.4 A statistical definition of temperature -- 4.5 Ensembles -- 4.6 Canonical ensemble -- 4.7 Applications of the Boltzmann distribution -- Further reading -- Exercises -- II: Kinetic theory of gases -- 5 The Maxwell-Boltzmann distribution -- 5.1 The velocity distribution -- 5.2 The speed distribution -- 5.3 Experimental justification -- Exercises -- 6 Pressure -- 6.1 Molecular distributions -- 6.2 The ideal gas law -- 6.3 Dalton's law -- Exercises -- 7 Molecular effusion -- 7.1 Flux -- 7.2 Effusion -- Exercises -- 8 The mean free path and collisions -- 8.1 The mean collision time -- 8.2 The collision cross-section -- 8.3 The mean free path -- Exercises -- III: Transport and thermal diffusion -- 9 Transport properties in gases -- 9.1 Viscosity -- 9.2 Thermal conductivity -- 9.3 Diffusion -- 9.4 More-detailed theory -- Further reading -- Exercises -- 10 The thermal diffusion equation -- 10.1 Derivation of the thermal diffusion equation -- 10.2 The one-dimensional thermal diffusion equation -- 10.3 The steady state -- 10.4 The thermal diffusion equation for a sphere -- 10.5 Newton's law of cooling -- 10.6 The Prandtl number -- 10.7 Sources of heat -- Exercises -- IV: The first law -- 11 Energy.

11.1 Some definitions -- 11.2 The first law of thermodynamics -- 11.3 Heat capacity -- Exercises -- 12 Isothermal and adiabatic processes -- 12.1 Reversibility -- 12.2 Isothermal expansion of an ideal gas -- 12.3 Adiabatic expansion of an ideal gas -- 12.4 Adiabatic atmosphere -- Exercises -- V: The second law -- 13 Heat engines and the second law -- 13.1 The second law of thermodynamics -- 13.2 The Carnot engine -- 13.3 Carnot's theorem -- 13.4 Equivalence of Clausius and Kelvin statements -- 13.5 Examples of heat engines -- 13.6 Heat engines running backwards -- 13.7 Clausius' theorem -- Further reading -- Exercises -- 14 Entropy -- 14.1 Definition of entropy -- 14.2 Irreversible change -- 14.3 The first law revisited -- 14.4 The Joule expansion -- 14.5 The statistical basis for entropy -- 14.6 The entropy of mixing -- 14.7 Maxwell's demon -- 14.8 Entropy and probability -- Exercises -- 15 Information theory -- 15.1 Information and Shannon entropy -- 15.2 Information and thermodynamics -- 15.3 Data compression -- 15.4 Quantum information -- Further reading -- Exercises -- VI: Thermodynamics in action -- 16 Thermodynamic potentials -- 16.1 Internal energy, U -- 16.2 Enthalpy, H -- 16.3 Helmholtz function, F -- 16.4 Gibbs function, G. -- 16.5 Availability -- 16.6 Maxwell's relations -- Exercises -- 17 Rods, bubbles and magnets -- 17.1 Elastic rod -- 17.2 Surface tension -- 17.3 Paramagnetism -- Exercises -- 18 The third law -- 18.1 Different statements of the third law -- 18.2 Consequences of the third law -- Exercises -- VII: Statistical mechanics -- 19 Equipartition of energy -- 19.1 Equipartition theorem -- 19.2 Applications -- 19.3 Assumptions made -- 19.4 Brownian motion -- Exercises -- 20 The partition function -- 20.1 Writing down the partition function -- 20.2 Obtaining the functions of state -- 20.3 The big idea.

20.4 Combining partition functions -- Exercises -- 21 Statistical mechanics of an ideal gas -- 21.1 Density of states -- 21.2 Quantum concentration -- 21.3 Distinguishability -- 21.4 Functions of state of the ideal gas -- 21.5 Gibbs paradox -- 21.6 Heat capacity of a diatomic gas -- Exercises -- 22 The chemical potential -- 22.1 A definition of the chemical potential -- 22.2 The meaning of the chemical potential -- 22.3 Grand partition function -- 22.4 Grand potential -- 22.5 Chemical potential as Gibbs function per particle -- 22.6 Many types of particle -- 22.7 Particle number conservation laws -- 22.8 Chemical potential and chemical reactions -- Further reading -- Exercises -- 23 Photons -- 23.1 The classical thermodynamics of electromagnetic radiation -- 23.2 Spectral energy density -- 23.3 Kirchhoff's law -- 23.4 Radiation pressure -- 23.5 The statistical mechanics of the photon gas -- 23.6 Black body distribution -- 23.7 Cosmic Microwave Background radiation -- 23.8 The Einstein A and B coefficients -- Further reading -- Exercises -- 24 Phonons -- 24.1 The Einstein model -- 24.2 The Debye model -- 24.3 Phonon dispersion -- Further reading -- Exercises -- VIII: Beyond the ideal gas -- 25 Relativistic gases -- 25.1 Relativistic dispersion relation for massive particles -- 25.2 The ultrarelativistic gas -- 25.3 Adiabatic expansion of an ultrarelativistic gas -- Exercises -- 26 Real gases -- 26.1 The van der Waals gas -- 26.2 The Dieterici equation -- 26.3 Virial expansion -- 26.4 The law of corresponding states -- Exercises -- 27 Cooling real gases -- 27.1 The Joule expansion -- 27.2 Isothermal expansion -- 27.3 Joule-Kelvin expansion -- 27.4 Liquefaction of gases -- Exercises -- 28 Phase transitions -- 28.1 Latent heat -- 28.2 Chemical potential and phase changes -- 28.3 The Clausius-Clapeyron equation -- 28.4 Stability & metastability.

28.5 The Gibbs phase rule -- 28.6 Colligative properties -- 28.7 Classification of phase transitions -- Further reading -- Exercises -- 29 Bose-Einstein and Fermi-Dirac distributions -- 29.1 Exchange and symmetry -- 29.2 Wave functions of identical particles -- 29.3 The statistics of identical particles -- Further reading -- Exercises -- 30 Quantum gases and condensates -- 30.1 The non-interacting quantum fluid -- 30.2 The Fermi gas -- 30.3 The Bose gas -- 30.4 Bose-Einstein condensation (BEC) -- Further reading -- Exercises -- IX: Special topics -- 31 Sound waves -- 31.1 Sound waves under isothermal conditions -- 31.2 Sound waves under adiabatic conditions -- 31.3 Are sound waves in general adiabatic or isothermal? -- 31.4 Derivation of the speed of sound within fluids -- Further reading -- Exercises -- 32 Shock waves -- 32.1 The Mach number -- 32.2 Structure of shock waves -- 32.3 Shock conservation laws -- 32.4 The Rankine-Hugoniot conditions -- Further reading -- Exercises -- 33 Brownian motion and fluctuations -- 33.1 Brownian motion -- 33.2 Johnson noise -- 33.3 Fluctuations -- 33.4 Fluctuations and the availability -- 33.5 Linear response -- 33.6 Correlation functions -- Further reading -- Exercises -- 34 Non-equilibrium thermodynamics -- 34.1 Entropy production -- 34.2 The kinetic coefficients -- 34.3 Proof of the Onsager reciprocal relations -- 34.4 Thermoelectricity -- 34.5 Time reversal and the arrow of time -- Further reading -- Exercises -- 35 Stars -- 35.1 Gravitational interaction -- 35.2 Nuclear reactions -- 35.3 Heat transfer -- Further reading -- Exercises -- 36 Compact objects -- 36.1 Electron degeneracy pressure -- 36.2 White dwarfs -- 36.3 Neutron stars -- 36.4 Black holes -- 36.5 Accretion -- 36.6 Black holes and entropy -- 36.7 Life, the Universe and Entropy -- Further reading -- Exercises -- 37 Earth's atmosphere.

37.1 Solar energy -- 37.2 The temperature profile in the atmosphere -- 37.3 The greenhouse effect -- Further reading -- Exercises -- A: Fundamental constants -- B: Useful formulae -- C: Useful mathematics -- C.1 The factorial integral -- C.2 The Gaussian integral -- C.3 Stirling's formula -- C.4 Riemann zeta function -- C.5 The polylogarithm -- C.6 Partial derivatives -- C.7 Exact differentials -- C.8 Volume of a hypersphere -- C.9 Jacobians -- C.10 The Dirac delta function -- C.11 Fourier transforms -- C.12 Solution of the diffusion equation -- C.13 Lagrange multipliers -- D: The electromagnetic spectrum -- E: Some thermodynamical definitions -- F: Thermodynamic expansion formulae -- G: Reduced mass -- H: Glossary of main symbols -- I: Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Z.
Abstract:
This modern introduction to thermal physics contains a step-by-step presentation of the key concepts. The text is copiously illustrated and each chapter contains several worked examples. - ;An understanding of thermal physics is crucial to much of modern physics, chemistry and engineering. This book provides a modern introduction to the main principles that are foundational to thermal physics, thermodynamics, and statistical mechanics. The key concepts are carefully presented in a clear way, and new ideas are illustrated with copious worked examples as well as a description of the historical background to their discovery. Applications are presented to subjects as. diverse as stellar astrophysics, information and communication theory, condensed matter physics, and climate change. Each chapter concludes with detailed exercises. -.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: