Cover image for Internet of Things : Key Applications and Protocols.
Internet of Things : Key Applications and Protocols.
Title:
Internet of Things : Key Applications and Protocols.
Author:
Hersent, Olivier.
ISBN:
9781119958345
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (372 pages)
Contents:
THE INTERNET OF THINGS -- Contents -- List of Acronyms -- Introduction -- Part I M2M AREA NETWORK PHYSICAL LAYERS -- 1 IEEE 802.15.4 -- 1.1 The IEEE 802 Committee Family of Protocols -- 1.2 The Physical Layer -- 1.2.1 Interferences with Other Technologies -- 1.2.2 Choice of a 802.15.4 Communication Channel, Energy Detection, Link Quality Information -- 1.2.3 Sending a Data Frame -- 1.3 The Media-Access Control Layer -- 1.3.1 802.15.4 Reduced Function and Full Function Devices, Coordinators, and the PAN Coordinator -- 1.3.2 Association -- 1.3.3 802.15.4 Addresses -- 1.3.4 802.15.4 Frame Format -- 1.3.5 Security -- 1.4 Uses of 802.15.4 -- 1.5 The Future of 802.15.4: 802.15.4e and 802.15.4g -- 1.5.1 802.15.4e -- 1.5.2 802.15.4g -- 2 Powerline Communication for M2M Applications -- 2.1 Overview of PLC Technologies -- 2.2 PLC Landscape -- 2.2.1 The Historical Period (1950-2000) -- 2.2.2 After Year 2000: The Maturity of PLC -- 2.3 Powerline Communication: A Constrained Media -- 2.3.1 Powerline is a Difficult Channel -- 2.3.2 Regulation Limitations -- 2.3.3 Power Consumption -- 2.3.4 Lossy Network -- 2.3.5 Powerline is a Shared Media and Coexistence is not an Optional Feature -- 2.4 The Ideal PLC System for M2M -- 2.4.1 Openness and Availability -- 2.4.2 Range -- 2.4.3 Power Consumption -- 2.4.4 Data Rate -- 2.4.5 Robustness -- 2.4.6 EMC Regulatory Compliance -- 2.4.7 Coexistence -- 2.4.8 Security -- 2.4.9 Latency -- 2.4.10 Interoperability with M2M Wireless Services -- 2.5 Conclusion -- References -- Part II LEGACY M2M PROTOCOLS FOR SENSOR NETWORKS, BUILDING AUTOMATION AND HOME AUTOMATION -- 3 The BACnetTM Protocol -- 3.1 Standardization -- 3.1.1 United States -- 3.1.2 Europe -- 3.1.3 Interworking -- 3.2 Technology -- 3.2.1 Physical Layer -- 3.2.2 Link Layer -- 3.2.3 Network Layer -- 3.2.4 Transport and Session Layers.

3.2.5 Presentation and Application Layers -- 3.3 BACnet Security -- 3.4 BACnet Over Web Services (Annex N, Annex H6) -- 3.4.1 The Generic WS Model -- 3.4.2 BACnet/WS Services -- 3.4.3 The Web Services Profile for BACnet Objects -- 3.4.4 Future Improvements -- 4 The LonWorks R Control Networking Platform -- 4.1 Standardization -- 4.1.1 United States of America -- 4.1.2 Europe -- 4.1.3 China -- 4.2 Technology -- 4.2.1 Physical Layer -- 4.2.2 Link Layer -- 4.2.3 Network Layer -- 4.2.4 Transport Layer -- 4.2.5 Session Layer -- 4.2.6 Presentation Layer -- 4.2.7 Application Layer -- 4.3 Web Services Interface for LonWorks Networks: Echelon SmartServer -- 4.4 A REST Interface for LonWorks -- 4.4.1 LonBridge REST Transactions -- 4.4.2 Requests -- 4.4.3 Responses -- 4.4.4 LonBridge REST Resources -- 5 ModBus -- 5.1 Introduction -- 5.2 ModBus Standardization -- 5.3 ModBus Message Framing and Transmission Modes -- 5.4 ModBus/TCP -- 6 KNX -- 6.1 The Konnex/KNX Association -- 6.2 Standardization -- 6.3 KNX Technology Overview -- 6.3.1 Physical Layer -- 6.3.2 Data Link and Routing Layers, Addressing -- 6.3.3 Transport Layer -- 6.3.4 Application Layer -- 6.3.5 KNX Devices, Functional Blocks and Interworking -- 6.4 Device Configuration -- 7 ZigBee -- 7.1 Development of the Standard -- 7.2 ZigBee Architecture -- 7.2.1 ZigBee and 802.15.4 -- 7.2.2 ZigBee Protocol Layers -- 7.2.3 ZigBee Node Types -- 7.3 Association -- 7.3.1 Forming a Network -- 7.3.2 Joining a Parent Node in a Network Using 802.15.4 Association -- 7.3.3 Using NWK Rejoin -- 7.4 The ZigBee Network Layer -- 7.4.1 Short-Address Allocation -- 7.4.2 Network Layer Frame Format -- 7.4.3 Packet Forwarding -- 7.4.4 Routing Support Primitives -- 7.4.5 Routing Algorithms -- 7.5 The ZigBee APS Layer -- 7.5.1 Endpoints, Descriptors -- 7.5.2 The APS Frame.

7.6 The ZigBee Device Object (ZDO) and the ZigBee Device Profile (ZDP) -- 7.6.1 ZDP Device and Service Discovery Services (Mandatory) -- 7.6.2 ZDP Network Management Services (Mandatory) -- 7.6.3 ZDP Binding Management Services (Optional) -- 7.6.4 Group Management -- 7.7 ZigBee Security -- 7.7.1 ZigBee and 802.15.4 Security -- 7.7.2 Key Types -- 7.7.3 The Trust Center -- 7.7.4 The ZDO Permissions Table -- 7.8 The ZigBee Cluster Library (ZCL) -- 7.8.1 Cluster -- 7.8.2 Attributes -- 7.8.3 Commands -- 7.8.4 ZCL Frame -- 7.9 ZigBee Application Profiles -- 7.9.1 The Home Automation (HA) Application Profile -- 7.9.2 ZigBee Smart Energy 1.0 (ZSE or AMI) -- 7.10 The ZigBee Gateway Specification for Network Devices -- 7.10.1 The ZGD -- 7.10.2 GRIP Binding -- 7.10.3 SOAP Binding -- 7.10.4 REST Binding -- 7.10.5 Example IPHA-ZGD Interaction Using the REST Binding -- 8 Z-Wave -- 8.1 History and Management of the Protocol -- 8.2 The Z-Wave Protocol -- 8.2.1 Overview -- 8.2.2 Z-Wave Node Types -- 8.2.3 RF and MAC Layers -- 8.2.4 Transfer Layer -- 8.2.5 Routing Layer -- 8.2.6 Application Layer -- Part III LEGACY M2M PROTOCOLS FOR UTILITY METERING -- 9 M-Bus and Wireless M-Bus -- 9.1 Development of the Standard -- 9.2 M-Bus Architecture -- 9.2.1 Physical Layer -- 9.2.2 Link Layer -- 9.2.3 Network Layer -- 9.2.4 Application Layer -- 9.3 Wireless M-Bus -- 9.3.1 Physical Layer -- 9.3.2 Data-Link Layer -- 9.3.3 Application Layer -- 9.3.4 Security -- 10 The ANSI C12 Suite -- 10.1 Introduction -- 10.2 C12.19: The C12 Data Model -- 10.2.1 The Read and Write Minimum Services -- 10.2.2 Some Remarkable C12.19 Tables -- 10.3 C12.18: Basic Point-to-Point Communication Over an Optical Port -- 10.4 C12.21: An Extension of C12.18 for Modem Communication -- 10.4.1 Interactions with the Data-Link Layer -- 10.4.2 Modifications and Additions to C12.19 Tables.

10.5 C12.22: C12.19 Tables Transport Over Any Networking Communication System -- 10.5.1 Reference Topology and Network Elements -- 10.5.2 C12.22 Node to C12.22 Network Communications -- 10.5.3 C12.22 Device to C12.22 Communication Module Interface -- 10.5.4 C12.19 Updates -- 10.6 Other Parts of ANSI C12 Protocol Suite -- 10.7 RFC 6142: C12.22 Transport Over an IP Network -- 10.8 REST-Based Interfaces to C12.19 -- 11 DLMS/COSEM -- 11.1 DLMS Standardization -- 11.1.1 The DLMS UA -- 11.1.2 DLMS/COSEM, the Colored Books -- 11.1.3 DLMS Standardization in IEC -- 11.2 The COSEM Data Model -- 11.3 The Object Identification System (OBIS) -- 11.4 The DLMS/COSEM Interface Classes -- 11.4.1 Data-Storage ICs -- 11.4.2 Association ICs -- 11.4.3 Time- and Event-Bound ICs -- 11.4.4 Communication Setup Channel Objects -- 11.5 Accessing COSEM Interface Objects -- 11.5.1 The Application Association Concept -- 11.5.2 The DLMS/COSEM Communication Framework -- 11.5.3 The Data Communication Services of COSEM Application Layer -- 11.6 End-to-End Security in the DLMS/COSEM Approach -- 11.6.1 Access Control Security -- 11.6.2 Data-Transport Security -- Part IV THE NEXT GENERATION: IP-BASED PROTOCOLS -- 12 6LoWPAN and RPL -- 12.1 Overview -- 12.2 What is 6LoWPAN? 6LoWPAN and RPL Standardization -- 12.3 Overview of the 6LoWPAN Adaptation Layer -- 12.3.1 Mesh Addressing Header -- 12.3.2 Fragment Header -- 12.3.3 IPv6 Compression Header -- 12.4 Context-Based Compression: IPHC -- 12.5 RPL -- 12.5.1 RPL Control Messages -- 12.5.2 Construction of the DODAG and Upward Routes -- 12.6 Downward Routes, Multicast Membership -- 12.7 Packet Routing -- 12.7.1 RPL Security -- 13 ZigBee Smart Energy 2.0 -- 13.1 REST Overview -- 13.1.1 Uniform Interfaces, REST Resources and Resource Identifiers -- 13.1.2 REST Verbs -- 13.1.3 Other REST Constraints, and What is REST After All?.

13.2 ZigBee SEP 2.0 Overview -- 13.2.1 ZigBee IP -- 13.2.2 ZigBee SEP 2.0 Resources -- 13.3 Function Sets and Device Types -- 13.3.1 Base Function Set -- 13.3.2 Group Enrollment -- 13.3.3 Meter -- 13.3.4 Pricing -- 13.3.5 Demand Response and Load Control Function Set -- 13.3.6 Distributed Energy Resources -- 13.3.7 Plug-In Electric Vehicle -- 13.3.8 Messaging -- 13.3.9 Registration -- 13.4 ZigBee SE 2.0 Security -- 13.4.1 Certificates -- 13.4.2 IP Level Security -- 13.4.3 Application-Level Security -- 14 The ETSI M2M Architecture -- 14.1 Introduction to ETSI TC M2M -- 14.2 System Architecture -- 14.2.1 High-Level Architecture -- 14.2.2 Reference Points -- 14.2.3 Service Capabilities -- 14.3 ETSI M2M SCL Resource Structure -- 14.3.1 SCL Resources -- 14.3.2 Application Resources -- 14.3.3 Access Right Resources -- 14.3.4 Container Resources -- 14.3.5 Group Resources -- 14.3.6 Subscription and Notification Channel Resources -- 14.4 ETSI M2M Interactions Overview -- 14.5 Security in the ETSI M2M Framework -- 14.5.1 Key Management -- 14.5.2 Access Lists -- 14.6 Interworking with Machine Area Networks -- 14.6.1 Mapping M2M Networks to ETSI M2M Resources -- 14.6.2 Interworking with ZigBee 1.0 -- 14.6.3 Interworking with C.12 -- 14.6.4 Interworking with DLMS/COSEM -- 14.7 Conclusion on ETSI M2M -- Part V KEY APPLICATIONS OF THE INTERNET OF THINGS -- 15 The Smart Grid -- 15.1 Introduction -- 15.2 The Marginal Cost of Electricity: Base and Peak Production -- 15.3 Managing Demand: The Next Challenge of Electricity Operators . . . and Why M2M Will Become a Key Technology -- 15.4 Demand Response for Transmission System Operators (TSO) -- 15.4.1 Grid-Balancing Authorities: The TSOs -- 15.4.2 Power Shedding: Who Pays What? -- 15.4.3 Automated Demand Response -- 15.5 Case Study: RTE in France.

15.5.1 The Public-Network Stabilization and Balancing Mechanisms in France.
Abstract:
An all-in-one reference to the major Home Area Networking, Building Automation and AMI protocols, including 802.15.4 over radio or PLC, 6LowPAN/RPL, ZigBee 1.0 and Smart Energy 2.0, Zwave, LON, BACNet, KNX, ModBus, mBus, C.12 and DLMS/COSEM, and the new ETSI M2M system level standard. In-depth coverage of Smart-grid and EV charging use cases. This book describes the Home Area Networking, Building Automation and AMI protocols and their evolution towards open protocols based on IP such as 6LowPAN and ETSI M2M. The authors discuss the approach taken by service providers to interconnect the protocols and solve the challenge of massive scalability of machine-to-machine communication for mission-critical applications, based on the next generation machine-to-machine ETSI M2M architecture. The authors demonstrate, using the example of the smartgrid use case, how the next generation utilities, by interconnecting and activating our physical environment, will be able to deliver more energy (notably for electric vehicles) with less impact on our natural resources. Key Features: Offers a comprehensive overview of major existing M2M and AMI protocols Covers the system aspects of large scale M2M and smart grid applications Focuses on system level architecture, interworking, and nationwide use cases Explores recent emerging technologies: 6LowPAN, ZigBee SE 2.0 and ETSI M2M, and for existing technologies covers recent developments related to interworking Relates ZigBee to the issue of smartgrid, in the more general context of carrier grade M2M applications Illustrates the benefits of the smartgrid concept based on real examples, including business cases This book will be a valuable guide for project managers working on smartgrid, M2M, telecommunications and utility projects, system engineers and developers, networking companies, and home automation

companies. It will also be of use to senior academic researchers, students, and policy makers and regulators.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: