Cover image for Laser Velocimetry in Fluid Mechanics.
Laser Velocimetry in Fluid Mechanics.
Title:
Laser Velocimetry in Fluid Mechanics.
Author:
Boutier, Alain.
ISBN:
9781118569399
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (428 pages)
Contents:
Cover -- Laser Velocimetry in Fluid Mechanics -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Introduction -- Chapter 1. Measurement Needs in Fluid Mechanics -- 1.1. Navier-Stokes equations -- 1.2. Similarity parameters -- 1.3. Scale notion -- 1.4. Equations for turbulent flows and for Reynolds stress tensor -- 1.5. Spatial-temporal correlations -- 1.6. Turbulence models -- 1.6.1. Zero equation model -- 1.6.2. One equation model -- 1.6.3. Two equations model -- 1.6.4. Reynolds stress models (RSM, ARSM) -- 1.7. Conclusion -- 1.8. Bibliography -- Chapter 2. Classification of Laser Velocimetry Techniques -- 2.1. Generalities -- 2.2. Definitions and vocabulary -- 2.3. Specificities of LDV -- 2.3.1. Advantages -- 2.3.2. Use limitations -- 2.4. Application domain of laser velocimeters (LDV, PIV, DGV) -- 2.5. Velocity measurements based on interactions with molecules -- 2.5.1. Excitation by electron beams -- 2.5.2. Laser fluorescence -- 2.5.3. Spectroscopy with a tunable laser diode in the infrared -- 2.5.4. Coherent anti-Stokes Raman scattering technique -- 2.5.5. Tagging techniques -- 2.5.6. Summary -- 2.6. Bibliography -- Chapter 3. Laser Doppler Velocimetry -- 3.1. Introduction -- 3.2. Basic idea: Doppler effect -- 3.2.1. Double Doppler effect -- 3.2.2. Four optical set-ups -- 3.2.3. Comments on the four configurations -- 3.3. Fringe velocimetry theory -- 3.3.1. Fringe pattern in probe volume -- 3.3.2. Interferometry theory -- 3.3.3. Comparison between the three theoretical approaches -- 3.3.4. SNR -- 3.4. Velocity sign measurement -- 3.4.1. Problem origin -- 3.4.2. Solution explanation -- 3.4.3. Various means to shift a laser beam frequency -- 3.5. Emitting and receiving optics -- 3.5.1. Emitting -- 3.5.2. Probe volume characteristics -- 3.5.3. Receiving part -- 3.6. General organigram of a mono-dimensional fringe velocimeter.

3.7. Necessity for simultaneous measurement of 2 or 3 velocity components -- 3.8. 2D laser velocimetry -- 3.9. 3D laser velocimetry -- 3.9.1. Exotic 3D laser velocimeters -- 3.9.2. 3D fringe laser velocimetry -- 3.9.3. Five-beam 3D laser velocimeters -- 3.9.4. Six-beam 3D laser velocimeters -- 3.10. Electronic processing of Doppler signal -- 3.10.1. Generalities and main classes of Doppler processors -- 3.10.2. Photon converter: photomultiplier -- 3.10.3. Doppler burst detection -- 3.10.4. First processing units -- 3.10.5. Digital processing units -- 3.10.6. Exotic techniques -- 3.10.7. Optimization of signal processing -- 3.11. Measurement accuracy in laser velocimetry -- 3.11.1. Probe volume influence -- 3.11.2. Calibration -- 3.11.3. Doppler signal quality -- 3.11.4. Velocity domain for measurements -- 3.11.5. Synthesis of various bias and error sources -- 3.11.6. Specific problems in 2D and 3D devices -- 3.11.7. Global accuracy -- 3.12. Specific laser velocimeters for specific applications -- 3.12.1. Optical fibers in fringe laser velocimetry -- 3.12.2. Miniature laser velocimeters -- 3.12.3. Doppler image of velocity field -- 3.13. Bibliography -- Chapter 4. Optical Barrier Velocimetry -- 4.1. Laser two-focus velocimeter -- 4.2. Mosaic laser velocimeter -- 4.3. Bibliography -- Chapter 5. Doppler Global Velocimetry -- 5.1. Overview of Doppler global velocimetry -- 5.2. Basic principles of DGV -- 5.3. Measurement uncertainties in DGV -- 5.4. Bibliography -- Chapter 6. Particle Image Velocimetry -- 6.1. Introduction -- 6.2. Two-component PIV -- 6.2.1. Laser light source -- 6.2.2. Emission optics in PIV -- 6.2.3. Image recording -- 6.2.4. PTV (Particle Tracking Velocimetry) -- 6.2.5. Measurement of velocity using PIV -- 6.2.6. Correlation techniques -- 6.3. Three-component PIV -- 6.3.1. Introduction.

6.3.2. Acquisition of the signal from the particles -- 6.3.3. Evaluation of the particles' motion -- 6.3.4. Modeling of sensor -- 6.3.5. Stereoscopy: 2D-3C PIV -- 6.3.6. 2.5D-3C surface PIV -- 6.3.7. 3C-3D volumic PIV -- 6.3.8. Conclusion -- 6.4. Bibliography -- Chapter 7. Seeding in Laser Velocimetry -- 7.1. Optical properties of tracers -- 7.2. Particle generators -- 7.3. Particle control -- 7.4. Particle behavior -- 7.5. Bibliography -- Chapter 8. Post-Processing of LDV Data -- 8.1. The average values -- 8.2. Statistical notions -- 8.3. Estimation of autocorrelations and spectra -- 8.3.1. Continuous signals of limited duration -- 8.3.2. Signals sampled periodically (of limited duration T) -- 8.3.3. Random sampling -- 8.4. Temporal filtering: principle and application to white noise -- 8.4.1. Case of white noise -- 8.4.2. Moving average (MA) -- 8.4.3. Autoregressive (AR) process: Markov -- 8.5. Numerical calculations of FT -- 8.6. Summary and essential results -- 8.7. Detailed calculation of the FT and of the spectrum of fluctuations invelocity measured by laser velocimetry -- 8.7.1. Notations and overview of results regarding the FT -- 8.7.2. Calculating the FT of a sampled function F(t): periodic sampling -- 8.7.3. Calculating the FT of a sampled function F(t): random sampling -- 8.7.4. FT of the sampled signal reconstructed after periodic sampling -- 8.7.5. FT of the sampled signal, reconstructed after random sampling -- 8.7.6. Spectrum of a random signal sampled in a random manner -- 8.7.7. Application to some signals -- 8.7.8. Main conclusions -- 8.8. Statistical bias -- 8.8.1. Simple example of statistical bias -- 8.8.2. Measurement sampling process -- 8.8.3. The various bias phenomena in laser velocimetry -- 8.8.4. Analysis of the bias correction put forward by McLaughlin and Tiederman -- 8.8.5. Method for detecting statistical bias.

8.8.6. Signal reconstruction methods -- 8.8.7. Interpolation methods applied to the reconstructed signal -- 8.9. Spectral analysis on resampled signals -- 8.9.1. Direct transform -- 8.9.2. Slotting technique -- 8.9.3. Kalman interpolating filter -- 8.10. Bibliography -- Chapter 9. Comparison of Different Techniques -- 9.1. Introduction -- 9.2. Comparison of signal intensities between DGV, PIV and LDV -- 9.3. Comparison of PIV and DGV capabilities -- 9.4. Conclusion -- 9.5. Bibliography -- Conclusion -- Nomenclature -- List of Authors -- Index.
Abstract:
In fluid mechanics, velocity measurement is fundamental in order to improve the behavior knowledge of the flow. Velocity maps help us to understand the mean flow structure and its fluctuations, in order to further validate codes.Laser velocimetry is an optical technique for velocity measurements; it is based on light scattering by tiny particles assumed to follow the flow, which allows the local fluid flow velocity and its fluctuations to be determined. It is a widely used non-intrusive technique to measure velocities in fluid flows, either locally or in a map.This book presents the various techniques of laser velocimetry, as well as their specific qualities: local measurements or in plane maps, mean or instantaneous values, 3D measurements. Flow seeding with particles is described with currently used products, as well as the appropriate aerosol generators. Post-processing of data allows us to extract synthetic information from measurements and to perform comparisons with results issued from CFD codes. The principles and characteristics of the different available techniques, all based on the scattering of light by tiny particles embedded in the flow, are described in detail; showing how they deliver different information, either locally or in a map, mean values and turbulence characteristics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: