Cover image for Instrumentation Reference Book.
Instrumentation Reference Book.
Title:
Instrumentation Reference Book.
Author:
Boyes, Walt.
ISBN:
9780080941882
Personal Author:
Edition:
4th ed.
Physical Description:
1 online resource (929 pages)
Contents:
Front Cover -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Contributors -- Introduction -- Part I. The Automation Knowledge Base -- Chapter 1. The Automation Practicum -- 1.1 Introduction -- 1.2 Job Descriptions -- 1.3 Careers and Career Paths -- 1.3.1 ISA Certified Automation Professional (CAP) Classification System -- 1.4 Where Automation Fits in the Extended Enterprise -- 1.5 Manufacturing Execution Systems and Manufacturing Operations Management -- 1.5.1 Introduction -- 1.5.2 Manufacturing Execution Systems (MES) and Manufacturing Operations Management (MOM) -- 1.5.3 The Connected Enterprise -- Suggested Reading -- Chapter 2. Basic Principles of Industrial Automation -- 2.1 Introduction -- 2.2 Standards -- 2.3 Sensor and System Design, Installation, and Commissioning -- 2.3.1 The Basics -- 2.3.2 Identification of the Application -- 2.3.3 Selection of the Appropriate Sensor/Transmitter -- 2.3.4 Selection of the Final Control Element -- 2.3.5 Selection of the Controller and Control Methodology -- 2.3.6 Design of the Installation -- 2.3.7 Installing, Commissioning, and Calibrating the System -- 2.4 Maintenance and Operation -- 2.4.1 Introduction -- 2.4.2 Life-cycle Optimization -- 2.4.3 Reliability Engineering -- 2.4.4 Asset Management, Asset Optimization, and Plant Optimization -- Suggested Reading -- Chapter 3. Measurement Methods and Control Strategies -- 3.1 Introduction -- 3.2 Measurement and Field Calibration Methodology -- 3.3 Process Control Strategies -- 3.4 Advanced Control Strategies -- Suggested Reading -- Chapter 4. Simulation and Design Software -- 4.1 Introduction -- 4.2 Simulation -- 4.3 Best Practices for Simulation Systems in Automation -- 4.4 Ground-up Testing and Training -- 4.5 Simulation System Selection -- 4.6 Simulation for Automation in the Validated Industries -- 4.7 Conclusion.

Chapter 5. Security for Industrial Automation -- 5.1 The Security Problem -- 5.2 An Analysis of the Security Needs of Industrial Automation -- 5.3 Some Recommendations for Industrial Automation Security -- Part II. Mechanical Measurements -- Chapter 6. Measurement of Flow -- 6.1 Introduction -- 6.2 Basic Principles of Flow Measurement -- 6.2.1 Streamlined and Turbulent Flow -- 6.2.2 Viscosity -- 6.2.3 Bernoulli's Theorem -- 6.2.4 Practical Realization of Equations -- 6.2.5 Modification of Flow Equations to Apply to Gases -- 6.3 Fluid Flow in Closed Pipes -- 6.3.1 Differential-Pressure Devices -- 6.3.2 Rotating Mechanical Meters for Liquids -- 6.3.3 Rotating Mechanical Meters for Gases -- 6.3.4 Electronic Flowmeters -- 6.3.5 Mass Flowmeters -- 6.4 Flow in Open Channels -- 6.4.1 Head/Area Method -- 6.4.2 Velocity/Area Methods -- 6.4.3 Dilution Gauging -- 6.5 Point Velocity Measurement -- 6.5.1 Laser Doppler Anemometer -- 6.5.2 Hotwire Anemometer -- 6.5.3 Pitot Tube -- 6.5.4 Electromagnetic Velocity Probe -- 6.5.5 Insertion Turbine -- 6.5.6 Propeller-Type Current Meter -- 6.5.7 Insertion Vortex -- 6.5.8 Ultrasonic Doppler Velocity Probe -- 6.6 Flowmeter Calibration Methods -- 6.6.1 Flowmeter Calibration Methods for Liquids -- 6.6.2 Flowmeter Calibration Methods for Gases -- References -- Further Reading -- Chapter 7. Measurement of Viscosity -- 7.1 Introduction -- 7.2 Newtonian and Non-Newtonian behavior -- 7.3 Measurement of the Shear Viscosity -- 7.3.1 Capillary Viscometer -- 7.3.2 Couette Viscometer -- 7.3.3 Cone-and-plate Viscometer -- 7.3.4 Parallel-plate Viscometer -- 7.4 Shop-Floor Viscometers -- 7.5 Measurement of the Extensional Viscosity -- 7.6 Measurement of Viscosity Underextremes of Temperature and Pressure -- 7.7 Online Measurements -- 7.8 Accuracy and Range -- References -- Further Reading -- Chapter 8. Measurement of Length.

8.1 Introduction -- 8.2 The Nature of Length -- 8.3 Derived Measurements -- 8.3.1 Derived from Length Measurement Alone -- 8.4 Standards and Calibration of Length -- 8.5 Practice of Length Measurement for Industrial Use -- 8.5.1 General Remarks -- 8.5.2 Mechanical Length-Measuring Equipment -- 8.5.3 Electronic Length Measurement -- 8.5.4 Use of Electromagnetic and Acoustic Radiation -- 8.5.5 Miscellaneous Methods -- 8.6 Automatic Gauging Systems -- References -- Further Reading -- Chapter 9. Measurement of Strain -- 9.1 Strain -- 9.2 Bonded Resistance Strain Gauges -- 9.2.1 Wire Gauges -- 9.2.2 Foil Gauges -- 9.2.3 Semiconductor Gauges -- 9.2.4 Rosettes -- 9.2.5 Residual Stress Measurement -- 9.3 Gauge Characteristics -- 9.3.1 Range -- 9.3.2 Cross-sensitivity -- 9.3.3 Temperature Sensitivity -- 9.3.4 Response Times -- 9.4 Installation -- 9.5 Circuits for Strain Gauges -- 9.6 Vibrating Wire Strain Gauge -- 9.7 Capacitive Strain Gauges -- 9.8 Surveys of Whole Surfaces -- 9.8.1 Brittle Lacquer -- 9.8.2 Patterns on Surfaces -- 9.9 Photoelasticity -- References -- Chapter 10. Measurement of Level and Volume -- 10.1 Introduction -- 10.2 Practice of Level Measurement -- 10.2.1 Installation -- 10.2.2 Sources of Error -- 10.3 Calibration of Level-Measuring Systems -- 10.4 Methods Providing Full-Range Level Measurement -- 10.4.1 Sight Gauges -- 10.4.2 Float-driven Instruments -- 10.4.3 Capacitance Probes -- 10.4.4 Upthrust Buoyancy -- 10.4.5 Pressure Sensing -- 10.4.6 Microwave and Ultrasonic, Time-Transit Methods -- 10.4.7 Force or Position Balance -- 10.5 Methods Providing Short-Range Detection -- 10.5.1 Magnetic -- 10.5.2 Electrical Conductivity -- 10.5.3 Infrared -- 10.5.4 Radio Frequency -- 10.5.5 Miscellaneous Methods -- References -- Chapter 11. Vibration -- 11.1 Introduction -- 11.1.1 Physical Considerations -- 11.1.2 Practical Problems of Installation.

11.1.3 Areas of Application -- 11.2 Amplitude Calibration -- 11.2.1 Accelerometer Calibration -- 11.2.2 Shock Calibration -- 11.2.3 Force Calibration -- 11.3 Sensor Practice -- 11.3.1 Mass-Spring Seismic Sensors -- 11.3.2 Displacement Measurement -- 11.3.3 Velocity Measurement -- 11.3.4 Acceleration Measurement -- 11.3.5 Measurement of Shock -- 11.4 Literature -- References -- Further Reading -- Chapter 12. Measurement of Force -- 12.1 Basic Concepts -- 12.2 Force Measurement Methods -- 12.3 Lever-balance Methods -- 12.3.1 Equal-lever Balance -- 12.3.2 Unequal-lever Balance -- 12.3.3 Compound Lever Balance -- 12.4 Force-Balance Methods -- 12.5 Hydraulic Pressure Measurement -- 12.6 Acceleration Measurement -- 12.7 Elastic Elements -- 12.7.1 Spring Balances -- 12.7.2 Proving Rings -- 12.7.3 Piezoelectric Transducers -- 12.7.4 Strain-gauge Load Cells -- 12.8 Further Developments -- References -- Chapter 13. Measurement of Density -- 13.1 General -- 13.2 Measurement of Density Using Weight -- 13.3 Measurement of Density Using Buoyancy -- 13.4 Measurement of Density Using a  Hydrostatic Head -- 13.4.1 General Differential Pressure Transmitter Methods -- 13.4.2 DP Transmitter with Overflow Tank -- 13.4.3 DP Transmitter with a Wet Leg -- 13.4.4 DP Transmitter with a Pressure Repeater -- 13.4.5 DP Transmitter with Flanged or Extended Diaphragm -- 13.4.6 DP Transmitter with Pressure Seals -- 13.4.7 DP Transmitter with Bubble Tubes -- 13.4.8 Other Process Considerations -- 13.5 Measurement of Density Using Radiation -- 13.6 Measurement of Density Using Resonant Elements -- 13.6.1 Liquid Density Measurement -- 13.6.2 Gas Density Measurements -- 13.6.3 Relative Density of Gases -- Further Reading -- Chapter 14. Measurement of Pressure -- 14.1 What is Pressure? -- 14.2 Pressure Measurement.

14.2.1 Pressure Measurements by Balancing a Column of Liquid of Known Density -- 14.2.2 Pressure Measurements by Allowing the Unknown Pressure to Act on a Known Area and Measuring the Resultant Force -- 14.2.3 Pressure Measurement by Allowing the Unknown Pressure to Act on a Flexible Member and Measuring the Resultant Motion -- 14.2.4 Pressure Measurement by Allowing the Unknown Pressure to Act on an Elastic Member and Measuring the Resultant Stress or Strain -- 14.3 Pressure Transmitters -- 14.3.1 Pneumatic Motion-Balance Pressure Transmitters -- 14.3.2 Pneumatic Force-Balance Pressure Transmitters -- 14.3.3 Force-Measuring Pressure Transmitters -- 14.3.4 Digital Pressure Transducers -- References -- Further Reading -- Chapter 15. Measurement of Vacuum -- 15.1 Introduction -- 15.1.1 Systems of Measurement -- 15.1.2 Methods of Measurement -- 15.1.3 Choice of Nonabsolute Gauges -- 15.1.4 Accuracy of Measurement -- 15.2 Absolute Gauges -- 15.2.1 Mechanical Gauges -- 15.2.2 Liquid Manometers -- 15.2.3 The McLeod Gauge (1878) -- 15.3 Nonabsolute Gauges -- 15.3.1 Thermal Conductivity Gauges -- 15.3.2 Ionization Gauges -- References -- Chapter 16. Particle Sizing -- 16.1 Introduction -- 16.2 Characterization of Particles -- 16.2.1 Statistical Mean Diameters -- 16.3 Terminal Velocity -- 16.4 Optical Effects Caused by Particles -- 16.5 Particle Shape -- 16.6 Methods for Characterizing a Group of Particles -- 16.6.1 Gaussian or Normal Distributions -- 16.6.2 Log-Normal Distributions -- 16.6.3 Rosin-Rammler Distributions -- 16.7 Analysis Methods that Measure Size Directly -- 16.7.1 Sieving -- 16.7.2 Microscope Counting -- 16.7.3 Direct Optical Methods -- 16.8 Analysis Methods that Measure Terminal Velocity -- 16.8.1 Sedimentation -- 16.8.2 Elutriation -- 16.8.3 Impaction -- 16.9 Analysis Methods that Infer Size from some other Property.

16.9.1 Coulter Counter.
Abstract:
The discipline of instrumentation has grown appreciably in recent years because of advances in sensor technology and in the interconnectivity of sensors, computers and control systems. This 4e of the Instrumentation Reference Book embraces the equipment and systems used to detect, track and store data related to physical, chemical, electrical, thermal and mechanical properties of materials, systems and operations. While traditionally a key area within mechanical and industrial engineering, understanding this greater and more complex use of sensing and monitoring controls and systems is essential for a wide variety of engineering areas--from manufacturing to chemical processing to aerospace operations to even the everyday automobile. In turn, this has meant that the automation of manufacturing, process industries, and even building and infrastructure construction has been improved dramatically. And now with remote wireless instrumentation, heretofore inaccessible or widely dispersed operations and procedures can be automatically monitored and controlled. This already well-established reference work will reflect these dramatic changes with improved and expanded coverage of the traditional domains of instrumentation as well as the cutting-edge areas of digital integration of complex sensor/control systems. Thoroughly revised, with up-to-date coverage of wireless sensors and systems, as well as nanotechnologies role in the evolution of sensor technology Latest information on new sensor equipment, new measurement standards, and new software for embedded control systems, networking and automated control Three entirely new sections on Controllers, Actuators and Final Control Elements; Manufacturing Execution Systems; and Automation Knowledge Base Up-dated and expanded references and critical standards.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: