Cover image for Airborne Measurements for Environmental Research : Methods and Instruments.
Airborne Measurements for Environmental Research : Methods and Instruments.
Title:
Airborne Measurements for Environmental Research : Methods and Instruments.
Author:
Wendisch, Manfred.
ISBN:
9783527653249
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (689 pages)
Series:
Wiley Series in Atmospheric Physics and Remote Sensing Ser.
Contents:
Airborne Measurements for Environmental Research -- 1 Introduction to Airborne Measurements of the Earth Atmosphere and Surface -- 2 Measurement of Aircraft State and Thermodynamic and Dynamic Variables -- 2.1 Introduction -- 2.2 Historical -- 2.3 Aircraft State Variables -- 2.3.1 Barometric Measurement of Aircraft Height -- 2.3.2 Inertial Attitude, Velocity, and Position -- 2.3.2.1 System Concepts -- 2.3.2.2 Attitude Angle Definitions -- 2.3.2.3 Gyroscopes and Accelerometers -- 2.3.2.4 Inertial-Barometric Corrections -- 2.3.3 Satellite Navigation by Global Navigation Satellite Systems -- 2.3.3.1 GNSS Signals -- 2.3.3.2 Differential GNSS -- 2.3.3.3 Position Errors and Accuracy of Satellite Navigation -- 2.3.4 Integrated IMU/GNSS Systems for Position and Attitude Determination -- 2.3.5 Summary, Gaps, Emerging Technologies -- 2.4 Static Air Pressure -- 2.4.1 Position Error -- 2.4.1.1 Tower Flyby -- 2.4.1.2 Trailing Sonde -- 2.4.2 Summary -- 2.5 Static Air Temperature -- 2.5.1 Aeronautic Definitions of Temperatures -- 2.5.2 Challenges of Airborne Temperature Measurements -- 2.5.3 Immersion Probe -- 2.5.4 Reverse-Flow Sensor -- 2.5.5 Radiative Probe -- 2.5.6 Ultrasonic Probe -- 2.5.7 Error Sources -- 2.5.7.1 Sensor -- 2.5.7.2 Dynamic Error Sources -- 2.5.7.3 In-Cloud Measurements -- 2.5.8 Calibration of Temperature Sensors -- 2.5.9 Summary, Gaps, Emerging Technologies -- 2.6 Water Vapor Measurements -- 2.6.1 Importance of Atmospheric Water Vapor -- 2.6.2 Humidity Variables -- 2.6.3 Dew or Frost Point Hygrometer -- 2.6.4 Lyman-α Absorption Hygrometer -- 2.6.5 Lyman-α Fluorescence Hygrometer -- 2.6.6 Infrared Absorption Hygrometer -- 2.6.7 Tunable Laser Absorption Spectroscopy Hygrometer -- 2.6.8 Thin Film Capacitance Hygrometer -- 2.6.9 Total Water Vapor and Isotopic Abundances of 18O and 2H -- 2.6.10 Factors Influencing In-Flight Performance.

2.6.10.1 Sticking of Water Vapor at Surfaces -- 2.6.10.2 Sampling Systems -- 2.6.11 Humidity Measurements with Dropsondes -- 2.6.12 Calibration and In-Flight Validation -- 2.6.13 Summary and Emerging Technologies -- 2.7 Three-Dimensional Wind Vector -- 2.7.1 Airborne Wind Measurement Using Gust Probes -- 2.7.1.1 True Airspeed (TAS) and Aircraft Attitude -- 2.7.1.2 Wind Vector Determination -- 2.7.1.3 Baseline Instrumentation -- 2.7.1.4 Angles of Attack and Sideslip -- 2.7.2 Errors and Flow Distortion -- 2.7.2.1 Parameterization Errors -- 2.7.2.2 Measurement Errors -- 2.7.2.3 Timing Errors -- 2.7.2.4 Errors due to Incorrect Sensor Configuration -- 2.7.3 In-Flight Calibration -- 2.8 Small-Scale Turbulence -- 2.8.1 Hot-Wire/Hot-Film Probes for High-Resolution Flow Measurements -- 2.8.2 Laser Doppler Anemometers -- 2.8.3 Ultrasonic Anemometers/Thermometers -- 2.8.4 Measurements of Atmospheric Temperature Fluctuations with Resistance Wires -- 2.8.5 Calibration of Fast-Response Sensors -- 2.8.6 Summary, Gaps, and Emerging Technologies -- 2.9 Flux Measurements -- 2.9.1 Basics -- 2.9.2 Measurement Errors -- 2.9.3 Flux Sampling Errors -- 2.9.3.1 Systematic Flux Error -- 2.9.3.2 Random Flux Error -- 2.9.4 Area-Averaged Turbulent Flux -- 2.9.5 Preparation for Airborne Flux Measurement -- 3 In Situ Trace Gas Measurements -- 3.1 Introduction -- 3.2 Historical and Rationale -- 3.3 Aircraft Inlets for Trace Gases -- 3.4 Examples of Recent Airborne Missions -- 3.5 Optical In Situ Techniques -- 3.5.1 UV Photometry -- 3.5.2 Differential Optical Absorption Spectroscopy -- 3.5.2.1 Measurement Principle -- 3.5.2.2 Examples of Measurement -- 3.5.3 Cavity Ring-Down Spectroscopy -- 3.5.3.1 Measurement Principle -- 3.5.3.2 Aircraft Implementation -- 3.5.3.3 Calibration and Uncertainty -- 3.5.3.4 Broadband Cavity Spectroscopic Methods.

3.5.4 Gas Filter Correlation Spectroscopy -- 3.5.5 Tunable Laser Absorption Spectroscopy -- 3.5.5.1 Tunable Diode Versus QCLs -- 3.5.5.2 Further Progress -- 3.5.6 Fluorescence Techniques -- 3.5.6.1 Resonance Fluorescence -- 3.5.6.2 LIF Techniques -- 3.5.6.3 Chemical Conversion Resonance Fluorescence Technique -- 3.6 Chemical Ionization Mass Spectrometry -- 3.6.1 Negative-Ion CIMS -- 3.6.1.1 Measurement Principle and Aircraft Implementation -- 3.6.1.2 Calibration and Uncertainties -- 3.6.1.3 Measurement Example -- 3.6.2 The Proton Transfer Reaction Mass Spectrometer -- 3.6.3 Summary and Future Perspectives -- 3.7 Chemical Conversion Techniques -- 3.7.1 Peroxy Radical Chemical Amplification -- 3.7.1.1 Measurement Principles -- 3.7.1.2 Airborne Measurements -- 3.7.1.3 Calibration and Uncertainties -- 3.7.2 Chemiluminescence Techniques -- 3.7.2.1 Measurement Principle -- 3.7.2.2 Measurement of Ozone Using Chemiluminescence -- 3.7.2.3 NOy and NO2 Conversion -- 3.7.2.4 Calibration and Uncertainties -- 3.7.2.5 Measurement Examples -- 3.7.2.6 Summary -- 3.7.3 Liquid Conversion Techniques -- 3.7.3.1 Measurement Principles -- 3.7.3.2 Aircraft Implementation -- 3.7.3.3 Data Processing -- 3.7.3.4 Limitations, Uncertainties, and Error Propagation -- 3.7.3.5 Calibration and Maintenance -- 3.7.3.6 Measurement Examples -- 3.7.3.7 Summary and Emerging Technologies -- 3.8 Whole Air Sampler and Chromatographic Techniques -- 3.8.1 Rationale -- 3.8.2 Whole Air Sampling Systems -- 3.8.2.1 Design of Air Samplers -- 3.8.2.2 The M55-Geophysica Whole Air Sampler -- 3.8.3 Water Vapor Sampling for Isotope Analysis -- 3.8.4 Measurement Examples -- 3.8.5 Off-Line Analysis of VOCs -- 3.8.5.1 Air Mass Ageing -- 3.8.5.2 Using VOC Observations to Probe Radical Chemistry -- 4 In Situ Measurements of Aerosol Particles -- 4.1 Introduction -- 4.1.1 Historical Overview.

4.1.2 Typical Mode Structure of Aerosol Particle Size Distribution -- 4.1.3 Quantitative Description of Aerosol Particles -- 4.1.4 Chapter Structure -- 4.2 Aerosol Particle Number Concentration -- 4.2.1 Condensation Particle Counters -- 4.2.2 Calibration of Cut-Off and Low-Pressure Detection Efficiency -- 4.3 Aerosol Particle Size Distribution -- 4.3.1 Single-Particle Optical Spectrometers -- 4.3.1.1 Measurement Principles and Implementation -- 4.3.1.2 Measurement Issues -- 4.3.2 Aerodynamic Separators -- 4.3.3 Electrical Mobility Measurements of Particle Size Distributions -- 4.3.4 Inversion Methods -- 4.4 Chemical Composition of Aerosol Particles -- 4.4.1 Direct Offline Methods -- 4.4.2 Direct Online Methods (Aerosol Mass Spectrometer, Single Particle Mass Spectrometer, and Particle-Into-Liquid Sampler) -- 4.4.2.1 Bulk Aerosol Collection and Analysis -- 4.4.2.2 Mass Spectrometric Methods -- 4.4.2.3 Incandescence Methods -- 4.4.3 Indirect Methods -- 4.5 Aerosol Optical Properties -- 4.5.1 Scattering Due to Aerosol Particles -- 4.5.2 Absorption of Solar Radiation Due to Aerosol Particles -- 4.5.2.1 Filter-Based Methods -- 4.5.2.2 In Situ Methods -- 4.5.2.3 Airborne Application -- 4.5.3 Extinction Due to Aerosol Particles -- 4.5.4 Inversion Methods -- 4.6 CCN and IN -- 4.6.1 CCN Measurements Methods -- 4.6.2 IN Measurement Methods -- 4.6.3 Calibration -- 4.6.3.1 CCN Instrument Calibration -- 4.6.3.2 IN Instrument Calibration -- 4.7 Challenges and Emerging Techniques -- 4.7.1 Particle Number -- 4.7.2 Particle Size -- 4.7.3 Aerosol Optical Properties -- 4.7.4 Chemical Composition of Aerosol Particles -- 4.7.5 CCN Measurements -- 4.7.6 IN Measurements -- 5 In Situ Measurements of Cloud and Precipitation Particles -- 5.1 Introduction -- 5.1.1 Rationale -- 5.1.2 Characterization of Cloud Microphysical Properties -- 5.1.3 Chapter Outline.

5.1.4 Statistical Limitations of Airborne Cloud Microphysical Measurements -- 5.2 Impaction and Replication -- 5.2.1 Historical -- 5.2.2 Measurement Principles and Implementation -- 5.2.3 Measurement Issues -- 5.3 Single-Particle Size and Morphology Measurements -- 5.3.1 Retrieval of the PSD -- 5.3.1.1 Correction of Coincidence Effects -- 5.3.1.2 Optimal Estimation of the Particle Concentration -- 5.3.2 Single-Particle Light Scattering -- 5.3.2.1 Measurement Principles and Implementation -- 5.3.2.2 Measurement Issues -- 5.3.2.3 Summary -- 5.3.3 Single-Particle Imaging -- 5.3.3.1 Measurement Principles and Implementation -- 5.3.3.2 Measurement Issues -- 5.3.3.3 Summary -- 5.3.4 Imaging of Particle Ensembles - Holography -- 5.4 Integral Properties of an Ensemble of Particles -- 5.4.1 Thermal Techniques for Cloud LWC and IWC -- 5.4.1.1 Hot-Wire Techniques -- 5.4.1.2 Mass-Sensitive Devices -- 5.4.1.3 Measurement Issues -- 5.4.2 Optical Techniques for the Measurement of Cloud Water -- 5.4.2.1 The PVM -- 5.4.2.2 Angular Optical Cloud Properties -- 5.4.2.3 The PN -- 5.4.2.4 The CIN -- 5.4.2.5 The CEP -- 5.4.2.6 Measurement Issues -- 5.5 Data Analysis -- 5.5.1.1 Adjustment to Adiabaticity -- 5.5.1.2 Instrument Intercalibration -- 5.5.1.3 Instrument Spatial Resolution -- 5.5.1.4 Integrating Measurements from Scattering and Imaging Probes -- 5.5.1.5 Integrating Cloud Microphysical and Optical Properties -- 5.5.1.6 Evaluation of OAP Images -- 5.6 Emerging Technologies -- 5.6.1 Interferometric Laser Imaging for Droplet Sizing -- 5.6.2 The Backscatter Cloud Probe -- 5.6.3 The Cloud Particle Spectrometer with Depolarization -- 5.6.4 Hawkeye Composite Cloud Particle Probe -- Acknowledgments -- 6 Aerosol and Cloud Particle Sampling -- 6.1 Introduction -- 6.2 Aircraft Influence -- 6.2.1 Flow Perturbation -- 6.2.2 Particle Trajectories -- 6.2.3 Measurement Artifacts.

6.3 Aerosol Particle Sampling.
Abstract:
This first comprehensive review of airborne measurement principles covers all atmospheric components and surface parameters. It describes the common techniques to characterize aerosol particles and cloud/precipitation elements, while also explaining radiation quantities and pertinent hyperspectral and active remote sensing measurement techniques along the way. As a result, the major principles of operation are introduced and exemplified using specific instruments, treating both classic and emerging measurement techniques. The two editors head an international community of eminent scientists, all of them accepted and experienced specialists in their field, who help readers to understand specific problems related to airborne research, such as immanent uncertainties and limitations. They also provide guidance on the suitability of instruments to measure certain parameters and to select the correct type of device. While primarily intended for climate, geophysical and atmospheric researchers, its relevance to solar system objects makes this work equally appealing to astronomers studying atmospheres of solar system bodies with telescopes and space probes.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: