Cover image for Glancing Angle Deposition of Thin Films : Engineering the Nanoscale.
Glancing Angle Deposition of Thin Films : Engineering the Nanoscale.
Title:
Glancing Angle Deposition of Thin Films : Engineering the Nanoscale.
Author:
Hawkeye, Matthew M.
ISBN:
9781118847329
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (316 pages)
Series:
Wiley Series in Materials for Electronic & Optoelectronic Applications
Contents:
Glancing Angle Deposition of Thin Films -- Contents -- Series Preface -- Preface -- 1 Introduction: Glancing Angle Deposition Technology -- 1.1 Nanoscale engineering and glancing angle deposition -- 1.2 GLAD-vantages -- 1.2.1 Nanoscale morphology control -- 1.2.2 Broad material compatibility -- 1.2.3 Novel thin-film material properties -- 1.2.4 Compatibility with standard microfabrication processes -- 1.2.5 Scalable fabrication method -- 1.3 The roots of glancing angle deposition: oblique deposition -- 1.4 The importance of experimental calibration -- 1.5 Computer simulations of glancing angle deposition growth -- 1.6 Major application areas in glancing angle deposition technology -- 1.6.1 Energy and catalysis -- 1.6.2 Sensing applications -- 1.6.3 Optics -- 1.7 Summary and outline of the book -- References -- 2 Engineering Film Microstructure with Glancing Angle Deposition -- 2.1 Introduction -- 2.2 Basics of conventional film growth -- 2.2.1 Physical vapour deposition -- 2.2.2 Nucleation and coalescence -- 2.2.3 Column microstructure -- 2.3 Glancing angle deposition technology: microstructural control via substrate motion -- 2.4 Engineering film morphology with α -- 2.4.1 Controlling microstructure and porosity -- 2.4.2 Directional column growth: column tilt β -- 2.5 Engineering film morphology: column steering via φ rotation -- 2.5.1 Controlling column architecture with φ: helical columns -- 2.5.2 Controlling microstructure with rotation speed: vertical columns -- 2.5.3 Continuous versus discrete substrate rotation -- 2.6 Growth characteristics of glancing angle deposition technology films -- 2.6.1 Evolutionary column growth -- 2.6.2 Column broadening -- 2.6.3 Column bifurcation -- 2.6.4 Anisotropic shadowing and column fanning -- 2.7 Advanced column steering algorithms -- 2.7.1 β variations in zigzag microstructures.

2.7.2 Spin-pause/two-phase substrate rotation: decoupling β and film density -- 2.7.3 Phisweep motion: competition-resilient structure growth -- 2.8 Additional control over film growth and structure -- 2.8.1 High-temperature glancing angle deposition growth -- 2.8.2 Multimaterial structures: co-deposition processes -- References -- 3 Creating High-Uniformity Nanostructure Arrays -- 3.1 Introduction -- 3.2 Seed layer design -- 3.2.1 Seed spacing and seed height -- 3.2.2 Seed lattice geometry -- 3.2.3 Seed size -- 3.2.4 Planar fill fraction -- 3.2.5 Seed shape -- 3.2.6 Two-dimensional shadow coverage -- 3.2.7 Seed material -- 3.2.8 Design parameter summary -- 3.3 Seed fabrication -- 3.3.1 Conventional techniques -- 3.3.2 Unconventional techniques -- 3.4 Advanced control of local shadowing environment -- 3.4.1 Preventing bifurcation: slow-corner motion -- 3.4.2 Preventing broadening: phisweep and substrate swing -- References -- 4 Properties and Characterization Methods -- 4.1 Introduction -- 4.2 Structural analysis with electron microscopy -- 4.2.1 Practical aspects -- 4.2.2 Scanning electron microscope image analysis -- 4.2.3 Three-dimensional column imaging: tomographic sectioning -- 4.2.4 Characterizing internal column structure with transmission electron microscope imaging -- 4.3 Structural properties of glancing angle deposition films -- 4.3.1 Film surface roughness and evolution -- 4.3.2 Column broadening -- 4.3.3 Intercolumn spacing and column density -- 4.4 Film density -- 4.4.1 Controlling density with : theoretical models -- 4.4.2 Experimental measurement and control of film density -- 4.5 Porosimetry and surface area determination -- 4.5.1 Surface area enhancement in glancing angle deposition films -- 4.5.2 The pore structure of glancing angle deposition films -- 4.6 Crystallographic texture and evolution -- 4.7 Electrical properties.

4.7.1 Resistivity in microstructured glancing angle deposition films -- 4.7.2 Anisotropic resistivity -- 4.7.3 Modelling glancing angle deposition film resistivity -- 4.7.4 Individual nanocolumn properties -- 4.8 Mechanical properties -- 4.8.1 α effects on film stress -- 4.8.2 Hardness properties -- 4.8.3 Elastic behaviour of glancing angle deposition films -- 4.8.4 Additional mechanical properties -- References -- 5 Glancing Angle Deposition Optical Films -- 5.1 Introduction -- 5.2 The Optics of Structured Glancing Angle Deposition Films -- 5.2.1 Optical anisotropy in columnar glancing angle deposition films -- 5.2.2 Modelling glancing angle deposition films with effective medium theory -- 5.2.3 The column and void material refractive indices -- 5.2.4 Modelling form birefringence via the depolarization factor -- 5.2.5 Dealing with microstructural uncertainty: bounds on the effective dielectric function -- 5.3 Calibrating Optical Properties of Glancing Angle Deposition Films -- 5.3.1 Basic measurements: isotropic approximations -- 5.3.2 Calibrating anisotropy with polarization-sensitive measurements -- 5.3.3 In-depth characterization with generalized techniques -- 5.3.4 Additional factors -- 5.4 Controlling Glancing Angle Deposition Film Optical Properties -- 5.4.1 Basic refractive index engineering with α -- 5.4.2 Controlling planar birefringence with α -- 5.4.3 Optimizing birefringence with serial bideposition -- 5.4.4 Modulating birefringence with complex φ motions -- 5.4.5 Controlling n with advanced glancing angle deposition motions -- 5.5 Graded-Index Coatings: Design and Fabrication -- 5.5.1 General design method for glancing angle deposition graded-index coatings -- 5.5.2 Designing φ motions for high-accuracy graded-index coatings -- 5.5.3 Specific examples -- 5.5.4 Antireflection coatings -- 5.5.5 Rugate interference filters.

5.5.6 Avoiding high-α growth instabilities in graded-index films -- 5.6 Designing Helical Structures for Circular Polarization Optics -- 5.6.1 Optics of chiral glancing angle deposition media -- 5.6.2 Engineering basic helical structures -- 5.6.3 Polygonal helical structures -- 5.6.4 Optimization of circular bragg phenomena with serial bideposition -- 5.6.5 Microcavity design in helical structures -- 5.6.6 Fabricating graded-birefringence thin-film designs -- 5.7 Practical Information and Issues -- 5.7.1 Post-deposition tuning -- 5.7.2 Environmental sensitivity -- 5.7.3 Optical scattering -- References -- 6 Post-Deposition Processing and Device Integration -- 6.1 Introduction -- 6.2 Post-deposition structural control -- 6.2.1 Annealing -- 6.2.2 Chemical composition control -- 6.2.3 Microstructural control via chemical etching -- 6.2.4 Ion-milling structural modification -- 6.2.5 Column surface modifications -- 6.3 Deposition onto nonplanar geometries -- 6.4 Photolithographic patterning of glancing angle deposition thin films -- 6.5 Encapsulation and replanarization of glancing angle deposition films -- 6.5.1 Encapsulation layer substrate motions -- 6.5.2 Film stress in encapsulation layers -- 6.6 Integrating electrical contacts with glancing angle deposition microstructures -- 6.6.1 Planar electrode configurations -- 6.6.2 Parallel-plate electrode configurations -- 6.7 Films in liquid environments -- 6.8 Using glancing angle deposition microstructures as replication templates -- 6.8.1 Single- and double-template fabrication processes -- 6.8.2 Nanotube fabrication via template fabrication -- References -- 7 Glancing Angle Deposition Systems and Hardware -- 7.1 Introduction -- 7.2 Vacuum Conditions -- 7.2.1 Vacuum requirements for glancing angle deposition systems -- 7.2.2 Physical vapour deposition process gases and higher pressure deposition.

7.3 Thickness calibration and deposition rate monitoring -- 7.3.1 Source directionality and tooling factor -- 7.3.2 Thickness calibration at nonzero a: deposition ratios -- 7.3.3 Extended source: effect on collimation -- 7.4 Uniformity Calculations for Glancing Angle Deposition Processes -- 7.4.1 Calculating geometry variation over a wafer -- 7.4.2 Mapping out thickness variation -- 7.4.3 Calculating parameter variations for moving substrates -- 7.4.4 Calculating thickness uniformity for moving substrates -- 7.4.5 Calculating column orientation uniformity -- 7.5 Substrate motion hardware -- 7.5.1 α motion accuracy and precision -- 7.5.2 φ motion requirements -- 7.5.3 Additional factors to consider -- 7.5.4 Substrate heating and cooling approaches -- 7.6 Scalability to manufacturing -- References -- A Selected Patents -- Index -- EULA.
Abstract:
This book provides a highly practical treatment of Glancing Angle Deposition (GLAD), a thin film fabrication technology optimized to produce precise nanostructures from a wide range of materials.  GLAD provides an elegant method for fabricating arrays of nanoscale helices, chevrons, columns, and other porous thin film architectures using physical vapour deposition processes such as sputtering or evaporation.  The book gathers existing procedures, methodologies, and experimental designs into a single, cohesive volume which will be useful both as a ready reference for those in the field and as a definitive guide for those entering it. It covers: Development and description of GLAD techniques for nanostructuring thin films Properties and characterization of nanohelices, nanoposts, and other porous films Design and engineering of optical GLAD films including fabrication and testing, and chiral films Post-deposition processing and integration to optimize film behaviour and structure Deposition systems and requirements for GLAD fabrication A patent survey, extensive relevant literature, and a survey of GLAD's wide range of material properties and diverse applications.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: