Cover image for Orbital Interactions in Chemistry.
Orbital Interactions in Chemistry.
Title:
Orbital Interactions in Chemistry.
Author:
Albright, Thomas A.
ISBN:
9781118558218
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (835 pages)
Contents:
Orbital Interactions In Chemistry -- Contents -- Preface -- About the Authors -- Chapter 1: Atomic and Molecular Orbitals -- 1.1 Introduction -- 1.2 Atomic Orbitals -- 1.3 Molecular Orbitals -- Problems -- References -- Chapter 2: Concepts of Bonding and Orbital Interaction -- 2.1 Orbital Interaction Energy -- 2.1.1 Degenerate Interaction -- 2.1.2 Nondegenerate Interaction -- 2.2 Molecular Orbital Coefficients -- 2.2.1 Degenerate Interaction -- 2.2.2 Nondegenerate Interaction -- 2.3 The Two-Orbital Problem-Summary -- 2.4 Electron Density Distribution -- Problems -- References -- Chapter 3: Perturbational Molecular Orbital Theory -- 3.1 Introduction -- 3.2 Intermolecular Perturbation -- 3.3 Linear H3, HF, and the Three-Orbital Problem -- 3.4 Degenerate Perturbation -- Problems -- References -- Chapter 4: Symmetry -- 4.1 Introduction -- 4.2 Symmetry of Molecules -- 4.3 Representations of Groups -- 4.4 Symmetry Properties of Orbitals -- 4.5 Symmetry-Adapted Wavefunctions -- 4.6 Direct Products -- 4.7 Symmetry Properties, Integrals, and the Noncrossing Rule -- 4.8 Principles of Orbital Construction Using Symmetry Principles -- 4.9 Symmetry Properties of Molecular Vibrations -- Problems -- References -- Chapter 5: Molecular Orbital Construction from Fragment Orbitals -- 5.1 Introduction -- 5.2 Triangular H3 -- 5.3 Rectangular and Square Planar H4 -- 5.4 Tetrahedral H4 -- 5.5 Linear H4 -- 5.6 Pentagonal H5 and Hexagonal H6 -- 5.7 Orbitals of Cyclic Systems -- Problems -- References -- Chapter 6: Molecular Orbitals of Diatomic Molecules and Electronegativity Perturbation -- 6.1 Introduction -- 6.2 Orbital Hybridization -- 6.3 Molecular Orbitals of Diatomic Molecules -- 6.4 Electronegativity Perturbation -- 6.5 Photoelectron Spectroscopy and Through-Bond Conjugation -- Problems -- References -- Chapter 7: Molecular Orbitals and Geometrical Perturbation.

7.1 Molecular Orbitals of AH2 -- 7.2 Geometrical Perturbation -- 7.3 Walsh Diagrams -- 7.4 Jahn-Teller Distortions -- 7.4.1 First-Order Jahn-Teller Distortion -- 7.4.2 Second-Order Jahn-Teller Distortion -- 7.4.3 Three-Center Bonding -- 7.5 Bond Orbitals and Photoelectron Spectra Of AH2 Molecules -- Problems -- References -- Chapter 8: State Wavefunctions and State Energies -- 8.1 Introduction -- 8.2 The Molecular Hamiltonian and State Wavefunctions -- 8.3 Fock Operator -- 8.4 State Energy -- 8.5 Excitation Energy -- 8.6 Ionization Potential and Electron Affinity -- 8.7 Electron Density Distribution and Magnitudes of Coulomb and Exchange Repulsions -- 8.8 Low versus High Spin States -- 8.9 Electron-Electron Repulsion and Charged Species -- 8.10 Configuration Interaction -- 8.11 Toward More Quantitative Treatments -- 8.12 The Density Functional Method -- Problems -- References -- Chapter 9: Molecular Orbitals of Small Building Blocks -- 9.1 Introduction -- 9.2 The AH System -- 9.3 Shapes of AH3 Systems -- 9.4 π-Bonding Effects of Ligands -- 9.5 The AH4 System -- 9.6 The AHn Series-Some Generalizations -- Problems -- References -- Chapter 10: Molecules with Two Heavy Atoms -- 10.1 Introduction -- 10.2 A2H6 Systems -- 10.3 12-Electron A2H4 Systems -- 10.3.1 Sudden Polarization -- 10.3.2 Substituent Effects -- 10.3.3 Dimerization and Pyramidalization of AH2 -- 10.4 14-Electron AH2BH2 Systems -- 10.5 AH3BH2 Systems -- 10.6 AH3BH Systems -- Problems -- References -- Chapter 11: Orbital Interactions through Space and through Bonds -- 11.1 Introduction -- 11.2 In-Plane s orbitals of Small Rings -- 11.2.1 Cyclopropane -- 11.2.2 Cyclobutane -- 11.3 Through-Bond Interaction -- 11.3.1 The Nature of Through-Bond Coupling -- 11.3.2 Other Through-Bond Coupling Units -- 11.4 Breaking A C-C Bond -- Problems -- References -- Chapter 12: Polyenes and Conjugated Systems.

12.1 Acyclic Polyenes -- 12.2 Hückel Theory -- 12.3 Cyclic Systems -- 12.4 Spin Polarization -- 12.5 Low- versus High-Spin States in Polyenes -- 12.6 Cross-Conjugated Polyenes -- 12.7 Perturbations of Cyclic Systems -- 12.8 Conjugation in Three Dimensions -- Problems -- References -- Chapter 13: Solids -- 13.1 Energy Bands -- 13.2 Distortions in One-Dimensional Systems -- 13.3 Other One-Dimensional Systems -- 13.4 Two- and Three-Dimensional Systems -- 13.5 Electron Counting and Structure -- 13.6 High-Spin and Low-Spin Considerations -- Problems -- References -- Chapter 14: Hypervalent Molecules -- 14.1 Orbitals of Octahedrally Based Molecules -- 14.2 Solid-State Hypervalent Compounds -- 14.3 Geometries of Hypervalent Molecules -- Problems -- References -- Chapter 15: Transition Metal Complexes: A Starting Point at the Octahedron -- 15.1 Introduction -- 15.2 Octahedral ML6 -- 15.3 π-Effects in an Octahedron -- 15.4 Distortions from an Octahedral Geometry -- 15.5 The Octahedron in the Solid State -- Problems -- References -- Chapter 16: Square Planar, Tetrahedral ML4 Complexes, and Electron Counting -- 16.1 Introduction -- 16.2 The Square Planar ML4 Molecule -- 16.3 Electron Counting -- 16.4 The Square Planar-Tetrahedral ML4 Interconversion -- 16.5 The Solid State -- Problems -- References -- Chapter 17: Five Coordination -- 17.1 Introduction -- 17.2 The C4v ML5 Fragment -- 17.3 Five Coordination -- 17.4 Molecules Built Up from ML5 Fragments -- 17.5 Pentacoordinate Nitrosyls -- 17.6 Square Pyramids in The Solid State -- Problems -- References -- Chapter 18: The C2v ML3 Fragment -- 18.1 Introduction -- 18.2 The Orbitals of A C2v ML3 Fragment -- 18.3 ML3-Containing Metallacycles -- 18.4 Comparison of C2v ML3 and C4v ML5 Fragments -- Problems -- References -- Chapter 19: The ML2 and ML4 Fragments -- 19.1 Development of the C2v ML4 Fragment Orbitals.

19.2 The Fe(CO)4 Story -- 19.3 Olefin-ML4 Complexes and M2L8 Dimers -- 19.4 The C2v ML2 Fragment -- 19.5 Polyene-ML2 Complexes -- 19.6 Reductive Elimination and Oxidative Addition -- Problems -- References -- Chapter 20: Complexes of ML3, MCp and Cp2M -- 20.1 Derivation of Orbitals for a C3v ML3 Fragment -- 20.2 The CpM Fragment Orbitals -- 20.3 Cp2M and Metallocenes -- 20.4 Cp2MLn Complexes -- Problems -- References -- Chapter 21: The Isolobal Analogy -- 21.1 Introduction -- 21.2 Generation of Isolobal Fragments -- 21.3 Caveats -- 21.4 Illustrations of the Isolobal Analogy -- 21.5 Reactions -- 21.6 Extensions -- Problems -- References -- Chapter 22: Cluster Compounds -- 22.1 Types of Cluster Compounds -- 22.2 Cluster Orbitals -- 22.3 Wade's Rules -- 22.4 Violations -- 22.5 Extensions -- Problems -- References -- Chapter 23: Chemistry on the Surface -- 23.1 Introduction -- 23.2 General Structural Considerations -- 23.3 General Considerations of Adsorption on Surfaces -- 23.4 Diatomics on a Surface -- 23.5 The Surface of Semiconductors -- Problems -- References -- Chapter 24: Magnetic Properties -- 24.1 Introduction -- 24.2 The Magnetic Insulating State -- 24.2.1 Electronic Structures -- 24.2.2 Factors Affecting the Effective On-Site Repulsion -- 24.2.3 Effect of Spin Arrangement on the Band Gap -- 24.3 Properties Associated With the Magnetic Moment -- 24.3.1 The Magnetic Moment -- 24.3.2 Magnetization -- 24.3.3 Magnetic Susceptibility -- 24.3.4 Experimental Investigation of Magnetic Energy Levels -- 24.4 Symmetric Spin Exchange -- 24.4.1 Mapping Analysis for a Spin Dimer -- 24.4.2 Through-Space and Through-Bond Orbital Interactions Leading to Spin Exchange -- 24.4.3 Mapping Analysis Based on Broken-Symmetry States -- 24.5 Magnetic Structure -- 24.5.1 Spin Frustration and Noncollinear Spin Arrangement -- 24.5.2 Long-Range Antiferromagnetic Order.

24.5.3 Ferromagnetic and Ferromagnetic-Like Transitions -- 24.5.4 Typical Cases Leading to Ferromagnetic Interaction -- 24.5.5 Short-Range Order -- 24.6 The Energy Gap in the Magnetic Energy Spectrum -- 24.6.1 Spin Gap and Field-Induced Magnetic Order -- 24.6.2 Magnetization Plateaus -- 24.7 Spin-Orbit Coupling -- 24.7.1 Spin Orientation -- 24.7.2 Single-Ion Anisotropy -- 24.7.3 Uniaxial Magnetism versus Jahn-Teller Instability -- 24.7.4 The Dzyaloshinskii-Moriya Interaction -- 24.7.5 Singlet-Triplet Mixing Under Spin-Orbit Coupling -- 24.8 What Appears versus What Is -- 24.8.1 Idle Spin in Cu3(OH)4SO4 -- 24.8.2 The FM-AFM versus AFM-AFM Chain -- 24.8.3 Diamond Chains -- 24.8.4 Spin Gap Behavior of a Two-Dimensional Square Net -- 24.9 Model Hamiltonians Beyond the Level of Spin Exchange -- 24.10 Summary Remarks -- Problems -- References -- Appendix I: Perturbational Molecular Orbital Theory -- Appendix II: Some Common Group Tables -- Appendix III: Normal Modes for Some Common Structural Types -- Index.
Abstract:
Explains the underlying structure that unites all disciplines in chemistry Now in its second edition, this book explores organic, organometallic, inorganic, solid state, and materials chemistry, demonstrating how common molecular orbital situations arise throughout the whole chemical spectrum. The authors explore the relationships that enable readers to grasp the theory that underlies and connects traditional fields of study within chemistry, thereby providing a conceptual framework with which to think about chemical structure and reactivity problems. Orbital Interactions in Chemistry begins by developing models and reviewing molecular orbital theory. Next, the book explores orbitals in the organic-main group as well as in solids. Lastly, the book examines orbital interaction patterns that occur in inorganic-organometallic fields as well as cluster chemistry, surface chemistry, and magnetism in solids. This Second Edition has been thoroughly revised and updated with new discoveries and computational tools since the publication of the first edition more than twenty-five years ago. Among the new content, readers will find: Two new chapters dedicated to surface science and magnetic properties Additional examples of quantum calculations, focusing on inorganic and organometallic chemistry Expanded treatment of group theory New results from photoelectron spectroscopy Each section ends with a set of problems, enabling readers to test their grasp of new concepts as they progress through the text. Solutions are available on the book's ftp site. Orbital Interactions in Chemistry is written for both researchers and students in organic, inorganic, solid state, materials, and computational chemistry. All readers will discover the underlying structure that unites all disciplines in chemistry.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Electronic Access:
Click to View
Holds: Copies: