Cover image for Gas Injection for Disposal and Enhanced Recovery.
Gas Injection for Disposal and Enhanced Recovery.
Title:
Gas Injection for Disposal and Enhanced Recovery.
Author:
Wu, Ying.
ISBN:
9781118938584
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (421 pages)
Series:
Advances in Natural Gas Engineering Ser.
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Section 1: Data and Correlations -- 1 Densities of Carbon Dioxide-Rich Mixtures Part I: Comparison with Pure CO2 -- 1.1 Introduction -- 1.2 Density -- 1.3 Literature Review -- 1.3.1 CO2 + Methane -- 1.3.2 CO2 + Nitrogen -- 1.4 Calculations -- 1.4.1 Kay's Rule -- 1.4.2 Modified Kay's Rule -- 1.4.3 Prausnitz-Gunn -- 1.5 Discussion -- 1.6 Conclusion -- References -- 2 Densities of Carbon Dioxide-Rich Mixtures Part II: Comparison with Thermodynamic Models -- 2.1 Introduction -- 2.2 Literature Review -- 2.3 Calculations -- 2.4 Lee Kesler -- 2.5 Benedict-Webb- Rubin (BWR) -- 2.6 Peng-Robinson -- 2.7 Soave-Redlich-Kwong -- 2.8 AQUAlibrium -- 2.9 Discussion -- 2.10 Conclusion -- References -- 3 On Transferring New Constant Pressure Heat Capacity Computation Methods to Engineering Practice -- 3.1 Introduction -- 3.2 Materials and Methods -- 3.3 Results and Discussion -- 3.4 Conclusions -- References -- 4 Developing High Precision Heat Capacity Correlations for Solids, Liquids and Ideal Gases -- 4.1 Introduction -- 4.2 Databases and Methods -- 4.3 Results and Discussion -- 4.4 Conclusion -- References -- 5 Method for Generating Shale Gas Fluid Composition from Depleted Sample -- 5.1 Introduction -- 5.2 Theory of Chemical Equilibrium Applied to Reservoir Fluids -- 5.3 Reservoir Fluid Composition from a Non-Representative Sample -- 5.3.1 Depleted Gas Condensate Samples -- 5.3.2 Samples from Tight Reservoirs -- 5.4 Numerical Examples -- 5.4.1 Depleted Gas Condensate Samples -- 5.4.2 Samples from Tight Reservoirs -- 5.5 Discussion of the Results -- 5.6 Conclusions -- 5.7 Nomenclature -- Greek letters -- Sub and super indices -- References -- 6 Phase Equilibrium in the Systems Hydrogen Sulfide + Methanol and Carbon Dioxide + Methanol -- 6.1 Introduction -- 6.2 Literature Review.

6.2.1 Hydrogen Sulfide + Methanol -- 6.2.2 Carbon Dioxide + Methanol -- 6.3 Modelling With Equations Of State -- 6.4 Nomenclature -- Greek -- References -- 7 Vapour-Liquid Equilibrium, Viscosity and Interfacial Tension Modelling of Aqueous Solutions of Ethylene Glycol or Triethylene Glycol in the Presence of Methane, Carbon Dioxide and Hydrogen Sulfide -- 7.1 Introduction -- 7.2 Results and Discussion -- 7.2.1 Experimental -- 7.2.2 Vapour Liquid Equilibrium and Phase Density Modeling -- 7.2.3 Liquid-Phase Viscosity Modeling -- 7.2.4 Interfacial Tension Modeling -- 7.2.5 Commercial Software Comparison -- 7.3 Conclusions -- 7.4 Nomenclature -- 7.5 Acknowledgement -- References -- Appendix 7.A -- Section 2: Process Engineering -- 8 Enhanced Gas Dehydration using Methanol Injection in an Acid Gas Compression System -- 8.1 Introduction -- 8.2 Methodology -- 8.2.1 Modeling Software -- 8.2.2 Simulation Setup -- 8.3 CASE I: 100 % CO2 -- 8.3.1 How Much to Dehydrate -- 8.3.2 Dehydration using Air Coolers -- 8.3.3 Methanol injection for hydrate suppression -- 8.3.4 Methanol Injection for Achieving 2:1 Water Content -- 8.3.5 DexPro™ for Achieving 2:1 Water Content -- 8.4 CASE II: 50 Percent CO2, 50 Percent H2S -- 8.4.1- How Much to Dehydrate? -- 8.4.2 Dehydration using Air Coolers -- 8.4.3 Methanol Injection for Hydrate Suppression -- 8.4.4 Methanol Injection for Achieving 2:1 Water Content -- 8.4.5 DexPro™ for Achieving 2:1 Water Content -- 8.5 CASE III: Enhanced Oil Recovery Composition -- 8.5.1 How Much to Dehydrate? -- 8.5.2 Enhanced Oil Recovery using Methanol -- 8.6 Conclusion -- 8.7 Additional Notes -- References -- 9 Comparison of the Design of CO2-capture Processes using Equilibrium and Rate Based Models -- 9.1 Introduction -- 9.2 VMG Rate Base -- 9.3 Rate Based Versus Equilibrium Based Models -- 9.3.1 Physical Absorption.

9.3.2 Isothermal Absorption with Chemical Reactions -- 9.4 Process Simulations -- 9.4.1 Configuration -- 9.4.2 Absorber -- 9.4.3 Absorber and Regenerator -- 9.4.4 Temperature Profile -- 9.5 Conclusions -- References -- 10 Post-Combustion Carbon Capture Using Aqueous Amines: A Mass-Transfer Study -- 10.1 Introduction -- 10.2 Mass Transfer Basics -- 10.3 Factors Influencing Mass Transfer -- 10.3.1 Concentration Driving Force -- 10.3.2 Reaction Rate Constant -- 10.3.3 Interfacial Area -- 10.4 Examples -- 10.4.1 Venturi/Spray Tower System -- 10.4.2 Amine Contactor with Pumparound -- 10.5 Summary -- References -- 11 BASF Technology for CO2 Capture and Regeneration -- 11.1 Introduction -- 11.2 Materials and Methods -- 11.2.1 HiPACTTM Laboratory Screening [4] -- 11.2.2 HiPACTTMPilot Plant [4] -- 11.2.3 HiPACTTM Demonstration Plant [5] -- 11.2.4 HiPACTTM Case Study [4,5] -- 11.2.5 OASETM blue Laboratory Screening [6, 7, 8, 9] -- 11.2.6 OASETM blue Miniplant [7, 9] -- 11.2.7 OASETM blue Pilot Plant: Niederaussem [7,8,10] -- 11.2.8 OASETM blue Case Study [1,2] -- 11.3 Results -- 11.3.1 HiPACTTMCO2 Capture Technology for Natural Gas Treating -- 11.3.2 HiPACTTMSolvent Stability and Losses -- 11.3.3 HiPACTTM Solvent CO2 Absorption Capacity and Kinetics -- 11.3.4 HiPACTTM Materials Compatibility -- 11.3.5 HiPACTTM Energy Requirements -- 11.3.6 HiPACTTM CO2 Stripping Pressure -- 11.3.7 HiPACTTM Economics -- 11.3.8 OASETM blue CO2 Capture Technology for Flue Gas Treating -- 11.3.9 OASETM blue Solvent Stability and Losses -- 11.3.10 OASETM blue Process Materials Compatibility -- 11.3.11 OASETM blue Solvent Capacity, Kinetics, Energy Requirements, and CO2 Stripping Pressure -- 11.3.12 OASETM blue Economics -- 11.3.13 OASETM blue Emissions -- 11.4 Conclusions -- 11.5 Acknowledgements and Disclaimer -- References.

12 Seven Deadly Sins of Filtration and Separation Systems in Gas Processing Operations -- 12.1 Gas Processing and Contamination Control -- 12.1.1 Feed and Effluent Separation -- 12.1.2 Unit Internal Separation -- 12.1.3 Seven Sins of Separation Devices in Gas Processing Facilities -- 12.2 The Seven Deadly Sins of Filtration and Separation Systems in Gas Processing Operations -- 12.2.1 Sin 1. Unsuitable Technology for the Application -- 12.2.2 Sin 2. Incorrect Compatibility (thermal, chemical, mechanical) -- 12.2.3 Sin 3. Deficient Vessel Design -- 12.2.4 Sin 4. Inappropriate Sealing Surfaces -- 12.2.5 Sin 5. Wrong Internals & Media -- 12.2.6 Sin 6. Lack of or Incorrect Maintenance Procedures -- 12.2.7 Sin 7. Instrumentation Deficiencies -- 12.3 Concluding Remarks -- Section 3: Acid Gas Injection -- 13 Development of Management Information System of Global Acid Gas Injection Projects -- 13.1 Background -- 13.2 Architecture of AGI-MIS -- 13.3 Data management -- 13.4 Data mining and information visualization -- 13.4.1 Injection formation -- 13.4.2 Pipeline -- 13.4.3 Injection rate -- 13.4.4 Leakage events -- 13.5 Interactive program -- 13.6 Conclusions -- 13.7 Acknowledgements -- References -- 14 Control and Prevention of Hydrate Formation and Accumulation in Acid Gas Injection Systems During Transient Pressure/Temperature Conditions -- 14.1 General Agi System Considerations -- 14.2 Composition And Properties Of Treated Acid Gases -- 14.3 Regulatory And Technical Restraints On Injection Pressures -- 14.4 Phase Equilibria, Hydrate Formation Boundaries And Prevention Of Hydrate Formation In Agi Systems -- 14.4.1 Hydrate Formation Conditions in AGI Compression Facilities -- 14.4.2 Hydrate Controls in AGI Compression Facilities -- 14.5 Formation, Remediation And Prevention Of Hydrate Formation During Unstable Injection Conditions -Three Case Studies.

14.5.1 Case 1: CO2 - rich TAG (90% CO2, 10%H2S) Injection into a 2,000 m Deep Clastic Reservoir -- 14.5.2 Case 2: CO2-Rich TAG (75% CO2, 25% H2S) Injected Into a 3050 m Deep Carbonate Reservoir -- 14.5.3 Case 3: CO2-Rich TAG (82% CO2, 18% H2S) Injected Into a 2950 m Deep Carbonate/Clastic Reservoir -- 14.6 Discussion And Conclusions -- References -- 15 Review of Mechanical Properties Related Problems for Acid Gas Injection -- 15.1 Introduction -- 15.2 Impact Elements -- 15.2.1 Well -- 15.2.2 Reservoir -- 15.2.3 Caprock -- 15.3 Coupled Processes -- 15.4 Failure Criteria -- 15.5 Conclusions -- 15.6 Acknowledgements -- References -- 16 Comparison of CO2 Storage Potential in Pyrolysed Coal Char of different Coal Ranks -- 16.1 Introduction -- 16.2 Apparatus, Methods, & Materials -- 16.2.1 Sample Characterization -- 16.3 Results And Discussion -- 16.3.1 Repeatability of adsorption experiments -- 16.3.2 Adsorption capacities of coal -- 16.3.3 Adsorption capacities of coal chars -- 16.3.4 Effect of temperature on blank test -- 16.4 Conclusion -- References -- Section 4: Carbon Dioxide Storage -- 17 Capture of CO2 and Storage in Depleted Gas Reservoirs in Alberta as Gas Hydrate -- 17.1 Experimental -- 17.2 Results And Discussion -- 17.3 Conclusions -- Reference -- 18 Geological Storage of CO2 as Hydrate in a McMurray Depleted Gas Reservoir -- 18.1 Introduction -- 18.2 Fundamentals -- 18.2.1 Gas Flow -- 18.2.2 Hydrate Phase Equilibrium -- 18.2.3 Assumptions -- 18.3 Reservoir -- 18.3.1 Geological Model -- 18.3.2 Base Case -- 18.4 Sensitivity Studies -- 18.4.1 Effect of the Injection Rate -- 18.4.2 Effect of the number of wells -- 18.4.3 Effect of the initial saturation of water -- 18.4.4 Effect of the heat removal -- 18.5 Long-term storage -- 18.6 Summary and conclusions -- 18.7 Acknowledgements -- References -- Section 5: Reservoir Engineering.

19 A Modified Calculation Method for the Water Coning Simulation Mode in Oil Reservoirs with Bottom Water Drive.
Abstract:
This is the fourth volume in a series of books focusing on natural gas engineering, focusing on two of the most important issues facing the industry today: disposal and enhanced recovery of natural gas. This volume includes information for both upstream and downstream operations, including chapters on shale, geological issues, chemical and thermodynamic models, and much more.   Written by some of the most well-known and respected chemical and process engineers working with natural gas today, the chapters in this important volume represent the most cutting-edge and state-of-the-art processes and operations being used in the field.  Not available anywhere else, this volume is a must-have for any chemical engineer, chemist, or process engineer working with natural gas.      There are updates of new technologies in other related areas of natural gas, in addition to disposal and enhanced recovery, including sour gas, acid gas injection, and natural gas hydrate formations.  Advances in Natural Gas Engineering is an ongoing series of books meant to form the basis for the working library of any engineer working in natural gas today.  Every volume is a must-have for any engineer or library.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: