Cover image for Microscope Image Processing.
Microscope Image Processing.
Title:
Microscope Image Processing.
Author:
Wu, Qiang.
ISBN:
9780080558547
Personal Author:
Physical Description:
1 online resource (585 pages)
Contents:
Front Cover -- Microscope Image Processing -- Copyright Page -- Contents -- Foreword -- Reference -- Preface -- Acknowledgments -- Chapter 1: Introduction -- 1.1 The Microscope and Image Processing -- 1.2 Scope of This Book -- 1.3 Our Approach -- 1.3.1 The Four Types of Images -- 1.3.1.1 Optical Image -- 1.3.1.2 Continuous Image -- 1.3.1.3 Digital Image -- 1.3.1.4 Displayed Image -- 1.3.2 The Result -- 1.3.2.1 Analytic Functions -- 1.3.3 The Sampling Theorem -- 1.4 The Challenge -- 1.5 Nomenclature -- 1.6 Summary of Important Points -- References -- Chapter 2: Fundamentals of Microscopy -- 2.1 Origins of the Microscope -- 2.2 Optical Imaging -- 2.2.1 Image Formation by a Lens -- 2.2.1.1 Imaging a Point Source -- 2.2.1.2 Focal Length -- 2.2.1.3 Numerical Aperture -- 2.2.1.4 Lens Shape -- 2.3 Diffraction-Limited Optical Systems -- 2.3.1 Linear System Analysis -- 2.4 Incoherent Illumination -- 2.4.1 The Point Spread Function -- 2.4.2 The Optical Transfer Function -- 2.5 Coherent Illumination -- 2.5.1 The Coherent Point Spread Function -- 2.5.2 The Coherent Optical Transfer Function -- 2.6 Resolution -- 2.6.1 Abbe Distance -- 2.6.2 Rayleigh Distance -- 2.6.3 Size Calculations -- 2.7 Aberration -- 2.8 Calibration -- 2.8.1 Spatial Calibration -- 2.8.2 Photometric Calibration -- 2.9 Summary of Important Points -- References -- Chapter 3: Image Digitization -- 3.1 Introduction -- 3.2 Resolution -- 3.3 Sampling -- 3.3.1 Interpolation -- 3.3.2 Aliasing -- 3.4 Noise -- 3.5 Shading -- 3.6 Photometry -- 3.7 Geometric Distortion -- 3.8 Complete System Design -- 3.8.1 Cumulative Resolution -- 3.8.2 Design Rules of Thumb -- 3.8.2.1 Pixel Spacing -- 3.8.2.2 Resolution -- 3.8.2.3 Noise -- 3.8.2.4 Photometry -- 3.8.2.5 Distortion -- 3.9 Summary of Important Points -- References -- Chapter 4: Image Display -- 4.1 Introduction -- 4.2 Display Characteristics.

4.2.1 Displayed Image Size -- 4.2.2 Aspect Ratio -- 4.2.3 Photometric Resolution -- 4.2.4 Grayscale Linearity -- 4.2.5 Low-Frequency Response -- 4.2.5.1 Pixel Polarity -- 4.2.5.2 Pixel Interaction -- 4.2.6 High-Frequency Response -- 4.2.7 The Spot-Spacing Compromise -- 4.2.8 Noise Considerations -- 4.3 Volatile Displays -- 4.4 Sampling for Display Purposes -- 4.4.1 Oversampling -- 4.4.2 Resampling -- 4.5 Display Calibration -- 4.6 Summary of Important Points -- References -- Chapter 5: Geometric Transformations -- 5.1 Introduction -- 5.2 Implementation -- 5.3 Gray-Level Interpolation -- 5.3.1 Nearest-Neighbor Interpolation -- 5.3.2 Bilinear Interpolation -- 5.3.3 Bicubic Interpolation -- 5.3.4 Higher-Order Interpolation -- 5.4 Spatial Transformation -- 5.4.1 Control-Grid Mapping -- 5.5 Applications -- 5.5.1 Distortion Removal -- 5.5.2 Image Registration -- 5.5.3 Stitching -- 5.6 Summary of Important Points -- References -- Chapter 6: Image Enhancement -- 6.1 Introduction -- 6.2 Spatial Domain Methods -- 6.2.1 Contrast Stretching -- 6.2.2 Clipping and Thresholding -- 6.2.3 Image Subtraction and Averaging -- 6.2.4 Histogram Equalization -- 6.2.5 Histogram Specification -- 6.2.6 Spatial Filtering -- 6.2.7 Directional and Steerable Filtering -- 6.2.8 Median Filtering -- 6.3 Fourier Transform Methods -- 6.3.1 Wiener Filtering and Wiener Deconvolution -- 6.3.2 Deconvolution Using a Least-Squares Approach -- 6.3.3 Low-Pass Filtering in the Fourier Domain -- 6.3.4 High-Pass Filtering in the Fourier Domain -- 6.4 Wavelet Transform Methods -- 6.4.1 Wavelet Thresholding -- 6.4.2 Differential Wavelet Transform and Multiscale Pointwise Product -- 6.5 Color Image Enhancement -- 6.5.1 Pseudo-Color Transformations -- 6.5.2 Color Image Smoothing -- 6.5.3 Color Image Sharpening -- 6.6 Summary of Important Points -- References -- Chapter 7: Wavelet Image Processing.

7.1 Introduction -- 7.1.1 Linear Transformations -- 7.1.2 Short-Time Fourier Transform and Wavelet Transform -- 7.2 Wavelet Transforms -- 7.2.1 Continuous Wavelet Transform -- 7.2.2 Wavelet Series Expansion -- 7.2.3 Haar Wavelet Functions -- 7.3 Multiresolution Analysis -- 7.3.1 Multiresolution and Scaling Function -- 7.3.2 Scaling Functions and Wavelets -- 7.4 Discrete Wavelet Transform -- 7.4.1 Decomposition -- 7.4.2 Reconstruction -- 7.4.3 Filter Banks -- 7.4.3.1 Two-Channel Subband Coding -- 7.4.3.2 Orthogonal Filter Design -- 7.4.4 Compact Support -- 7.4.5 Biorthogonal Wavelet Transforms -- 7.4.5.1 Biorthogonal Filter Banks -- 7.4.5.2 Examples of Biorthogonal Wavelets -- 7.4.6 Lifting Schemes -- 7.4.6.1 Biorthogonal Wavelet Design -- 7.4.6.2 Wavelet Transform Using Lifting -- 7.5 Two-Dimensional Discrete Wavelet Transform -- 7.5.1 Two-Dimensional Wavelet Bases -- 7.5.2 Forward Transform -- 7.5.3 Inverse Transform -- 7.5.4 Two-Dimensional Biorthogonal Wavelets -- 7.5.5 Overcomplete Transforms -- 7.6 Examples -- 7.6.1 Image Compression -- 7.6.2 Image Enhancement -- 7.6.3 Extended Depth-of-Field by Wavelet Image Fusion -- 7.7 Summary of Important Points -- References -- Chapter 8: Morphological Image Processing -- 8.1 Introduction -- 8.2 Binary Morphology -- 8.2.1 Binary Erosion and Dilation -- 8.2.2 Binary Opening and Closing -- 8.2.3 Binary Morphological Reconstruction from Markers -- 8.2.3.1 Connectivity -- 8.2.3.2 Markers -- 8.2.3.3 The Edge-Off Operation -- 8.2.4 Reconstruction from Opening -- 8.2.5 Area Opening and Closing -- 8.2.6 Skeletonization -- 8.3 Grayscale Operations -- 8.3.1 Threshold Decomposition -- 8.3.2 Erosion and Dilation -- 8.3.2.1 Gradient -- 8.3.3 Opening and Closing -- 8.3.3.1 Top-Hat Filtering -- 8.3.3.2 Alternating Sequential Filters -- 8.3.4 Component Filters and Grayscale Morphological Reconstruction.

8.3.4.1 Morphological Reconstruction -- 8.3.4.2 Alternating Sequential Component Filters -- 8.3.4.3 Grayscale Area Opening and Closing -- 8.3.4.4 Edge-Off Operator -- 8.3.4.5 h-Maxima and h-Minima Operations -- 8.3.4.6 Regional Maxima and Minima -- 8.3.4.7 Regional Extrema as Markers -- 8.4 Watershed Segmentation -- 8.4.1 Classical Watershed Transform -- 8.4.2 Filtering the Minima -- 8.4.3 Texture Detection -- 8.4.4 Watershed from Markers -- 8.4.5 Segmentation of Overlapped Convex Cells -- 8.4.6 Inner and Outer Markers -- 8.4.7 Hierarchical Watershed -- 8.4.8 Watershed Transform Algorithms -- 8.5 Summary of Important Points -- References -- Chapter 9: Image Segmentation -- 9.1 Introduction -- 9.1.1 Pixel Connectivity -- 9.2 Region-Based Segmentation -- 9.2.1 Thresholding -- 9.2.1.1 Global Thresholding -- 9.2.1.2 Adaptive Thresholding -- 9.2.1.3 Threshold Selection -- 9.2.1.4 Thresholding Circular Spots -- 9.2.1.5 Thresholding Noncircular and Noisy Spots -- 9.2.2 Morphological Processing -- 9.2.2.1 Hole Filling -- 9.2.2.2 Border-Object Removal -- 9.2.2.3 Separation of Touching Objects -- 9.2.2.4 The Watershed Algorithm -- 9.2.3 Region Growing -- 9.2.4 Region Splitting -- 9.3 Boundary-Based Segmentation -- 9.3.1 Boundaries and Edges -- 9.3.2 Boundary Tracking Based on Maximum Gradient Magnitude -- 9.3.3 Boundary Finding Based on Gradient Image Thresholding -- 9.3.4 Boundary Finding Based on Laplacian Image Thresholding -- 9.3.5 Boundary Finding Based on Edge Detection and Linking -- 9.3.5.1 Edge Detection -- 9.3.5.2 Edge Linking and Boundary Refinement -- 9.3.6 Encoding Segmented Images -- 9.3.6.1 Object Label Map -- 9.3.6.2 Boundary Chain Code -- 9.4 Summary of Important Points -- References -- Chapter 10: Object Measurement -- 10.1 Introduction -- 10.2 Measures for Binary Objects -- 10.2.1 Size Measures -- 10.2.1.1 Area -- 10.2.1.2 Perimeter.

10.2.1.3 Area and Perimeter of a Polygon -- 10.2.2 Pose Measures -- 10.2.2.1 Centroid -- 10.2.2.2 Orientation -- 10.2.3 Shape Measures -- 10.2.3.1 Thinness Ratio -- 10.2.3.2 Rectangularity -- 10.2.3.3 Circularity -- 10.2.3.4 Euler Number -- 10.2.3.5 Moments -- 10.2.3.6 Elongation -- 10.2.4 Shape Descriptors -- 10.2.4.1 Differential Chain Code -- 10.2.4.2 Fourier Descriptors -- 10.2.4.3 Medial Axis Transform -- 10.2.4.4 Graph Representations -- 10.3 Distance Measures -- 10.3.1 Euclidean Distance -- 10.3.2 City-Block Distance -- 10.3.3 Chessboard Distance -- 10.4 Gray-Level Object Measures -- 10.4.1 Intensity Measures -- 10.4.1.1 Integrated Optical Intensity -- 10.4.1.2 Average Optical Intensity -- 10.4.1.3 Contrast -- 10.4.2 Histogram Measures -- 10.4.2.1 Mean Gray Level -- 10.4.2.2 Standard Deviation of Gray Levels -- 10.4.2.3 Skew -- 10.4.2.4 Entropy -- 10.4.2.5 Energy -- 10.4.3 Texture Measures -- 10.4.3.1 Statistical Texture Measures -- 10.4.3.2 Power Spectrum Features -- 10.5 Object Measurement Considerations -- 10.6 Summary of Important Points -- References -- Chapter 11: Object Classification -- 11.1 Introduction -- 11.2 The Classification Process -- 11.2.1 Bayes' Rule -- 11.3 The Single-Feature, Two-Class Case -- 11.3.1 A Priori Probabilities -- 11.3.2 Conditional Probabilities -- 11.3.3 Bayes' Theorem -- 11.4 The Three-Feature, Three-Class Case -- 11.4.1 Bayes Classifier -- 11.4.1.1 Prior Probabilities -- 11.4.1.2 Classifier Training -- 11.4.1.3 The Mean Vector -- 11.4.1.4 Covariance -- 11.4.1.5 Variance and Standard Deviation -- 11.4.1.6 Correlation -- 11.4.1.7 The Probability Density Function -- 11.4.1.8 Classification -- 11.4.1.9 Log Likelihoods -- 11.4.1.10 Mahalanobis Distance Classifier -- 11.4.1.11 Uncorrelated Features -- 11.4.2 A Numerical Example -- 11.5 Classifier Performance -- 11.5.1 The Confusion Matrix -- 11.6 Bayes Risk.

11.6.1 Minimum-Risk Classifier.
Abstract:
Digital image processing, an integral part of microscopy, is increasingly important to the fields of medicine and scientific research. This book provides a unique one-stop reference on the theory, technique, and applications of this technology. Written by leading experts in the field, this book presents a unique practical perspective of state-of-the-art microscope image processing and the development of specialized algorithms. It contains in-depth analysis of methods coupled with the results of specific real-world experiments. Microscope Image Processing covers image digitization and display, object measurement and classification, autofocusing, and structured illumination. Key Features: Detailed descriptions of many leading-edge methods and algorithms In-depth analysis of the method and experimental results, taken from real-life examples Emphasis on computational and algorithmic aspects of microscope image processing Advanced material on geometric, morphological, and wavelet image processing, fluorescence, three-dimensional and time-lapse microscopy, microscope image enhancement, MultiSpectral imaging, and image data management This book is of interest to all scientists, engineers, clinicians, post-graduate fellows, and graduate students working in the fields of biology, medicine, chemistry, pharmacology, and other related fields. Anyone who uses microscopes in their work and needs to understand the methodologies and capabilities of the latest digital image processing techniques will find this book invaluable. * Presents a unique practical perspective of state-of-the-art microcope image processing and the development of specialized algorithms. * Each chapter includes in-depth analysis of methods coupled with the results of specific real-world experiments. * Co-edited by Kenneth R. Castleman, world-renowned pioneer in digital image processing

and author of two seminal textbooks on the subject.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: