Cover image for Biomechanics of Dental Implants : Handbook of Researchers.
Biomechanics of Dental Implants : Handbook of Researchers.
Title:
Biomechanics of Dental Implants : Handbook of Researchers.
Author:
Cehreli, Murat.
ISBN:
9781621008170
Personal Author:
Physical Description:
1 online resource (381 pages)
Series:
Dental Science, Materials and Technology
Contents:
BIOMECHANICS OF DENTAL IMPLANTS -- BIOMECHANICS OF DENTAL IMPLANTS -- CONTENTS -- PREFACE -- CONTRIBUTORS -- MECHANICAL PROPERTIES OF BONE TISSUE -- 1. INTRODUCTION -- 1.1. Structural vs. Material Behavior -- 1.2. Stress and Strain -- 1.3. Material Properties -- 2. BONE TISSUE MORPHOLOGY -- 3. CORTICAL BONE MECHANICAL PROPERTIES -- 3.1. Material Properties -- 3.2. Viscoelasticity -- 3.3. Fatigue -- 3.4. Additional Effects on Cortical Material Properties -- 4. CANCELLOUS BONE MECHANICAL PROPERTIES -- 4.1. Material Properties -- 4.2. Viscoelasticity -- 4.3. Fatigue -- 4.4. Additional Effects on Cancellous Material Properties -- CONCLUSION -- REFERENCES -- ANİMAL MODELS FOR BİOLOGİCAL/BİOMECHANİCAL ASSESSMENT OF ENDOSSEOUS IMPLANTS -- 1. INTRODUCTION -- 2. ANIMALS FOR BIOLOGICAL/BIOMECHANICAL TESTING OF ENDOSSEOUS IMPLANTS -- 2.1. Rabbit -- 2.2. Canine -- 2.3. Pig -- 2.4. Primate -- REFERENCES -- NANOTOPOGRAPHY IN DENTAL IMPLANT SURFACES -- 1. INTRODUCTION -- 2. SIGNIFICANCE OF IMPLANT SURFACE TOPOGRAPHY -- 2.1. The Technologies of Nanotopography -- 2.3. The Actions of Nanotopography -- 3. BIOMIMETICS -- 3.1. Protein Adsorption -- 3.2. Cell Adhesion and Spreading -- 3.3. Selectivity of Adhesion -- 3.4. Cell Signaling Pathways -- 3.5. Cell Motility and Proliferation -- 3.6. Osteoinduction and Differentiation -- 3.7. Bone Formation -- 4. THE CLINICAL APPLICATION OF NANOTOPOGRAPHY -- CONCLUSION -- REFERENCES -- MEASURING IMPLANT STABILITY -- 1. INTRODUCTION -- 2. NON-INVASIVE METHODS TO ASSESS IMPLANT STABILITY -- 2.1. Periotest® -- 2.2. Cutting-Torque or Insertion-Torque Measurements -- 2.3. Resonance Frequency Analysis -- 2.4. Subjective Assessment -- 2.5. Percussion Test -- 2.6. Correlations between Current Methods -- 3. INVASIVE METHODS TO ASSESS IMPLANT STABILITY -- 3.1. Pull-Out and Push-out Test -- 3.2. Push-in Test -- 3.3. Removal Torque Test.

REFERENCES -- ANIMAL EXPERIMENTAL FINDINGS ON THE EFFECT OF MECHANICAL LOAD ON PERI-IMPLANT TISSUE DIFFERENTIATION AND ADAPTATION -- 1. INTRODUCTION -- 2. MECHANOBIOLOGY AT THE TISSUE-IMPLANT INTERFACE -- 2.1. Definition -- 2.2. Theoretical Mechanobiology -- 2.2.1. Mechanobiological Models of Tissue Differentiation -- 2.2.2. Mechanobiological Model for Peri-Implant Tissue Differentiation -- 2.3. Experimental Mechanobiology -- 2.3.1. Mechanical Parameters Controlling Bone Biology -- 2.3.1. Mechanical Parameters Controlling Bone Biology at the Tissue-Implant Interface -- 3. MECHANOBIOLOGY AT THE TISSUE-IMPLANT INTERFACE DURING IMMEDIATE IMPLANT LOADING -- 3.1. Animal Model 1: The Rabbit Bone Chamber Model -- 3.1.1. Animal Model and Sample Processing -- 3.1.2. Experimental Studies -- 3.1.2.1. Effect of Immediate Implant Loading on Peri-Implant Tissue Differentiation -- 3.1.2.2. Effect of Implant Design on Peri-Implant Tissue Differentiation -- 3.1.2.3. Effect of Implant Surface Roughness on Peri-Implant Tissue Differentiation -- 3.1.2.4. Effect of Magnitude of Loading on Peri-Implant Tissue Differentiation -- 3.1.3. Numerical Simulation Studies -- 3.1.3.1. Numerical Model of the Bone Chamber -- 3.1.3.2. Numerical Simulation of the Effect of Implant Design on Peri-Implant Tissue Differentiation -- 3.1.3.3. Numerical Simulation of the Effect of the Amplitude and Frequency of Loading on Peri-Implant Tissue Differentiation -- 3.2. Animal Model 2: The Rabbit Cortical Tibia Model -- 3.2.1. Animal Model and Sample Processing -- 3.2.2. The Effect of Immediate Implant Loading on Cortical Bone Healing -- 4. MECHANOBIOLOGY AT THE TISSUE-IMPLANT INTERFACE DURING EARLY IMPLANT LOADING -- 4.1. Animal Model: The Guinea Pig Cortical Tibia Model -- 4.2. Experimental Findings -- 4.2.1. Effect of Early Implant Loading on Peri-Implant Bone Formation and Adaptation.

4.2.2. Effect of Strain Rate of Loading on Peri-Implant Bone Formation and Adaptation -- 4.2.3. Effect of Amplitude of Loading during Low-Frequency Loading on Peri-Implant Bone Formation and Adaptation -- 5. MECHANOBIOLOGY AT THE TISSUE-IMPLANT INTERFACE DURING DELAYED IMPLANT LOADING -- 5.1. Animal Model: The Rabbit Cortical Tibia Model -- 5.2. The Effect of Static and Dynamic Loading on Marginal Bone Reactions around Osseointegrated Implants -- 6. PRINCIPAL FINDINGS AND CLINICAL RELEVANCE -- 6.1. Principal Findings of the Different Animal Models -- 6.1.2. The Trabecular Bone Model -- 6.1.2. The Cortical Bone Model -- 6.2. Clinical Relevance -- CONCLUSION -- REFERENCES -- HISTOLOGIC AND HISTOMORPHOMETRIC EVALUATION OF IMPLANTS RETRIEVED FROM HUMANS -- 1. INTRODUCTION -- 2. DENTAL IMPLANT SURFACES -- 3. IMPLANTS RETRIEVED AFTER DIFFERENT TIME PERIODS -- 4. IMPLANTS INSERTED IN POOR BONE SITES -- 4.1. HA Coated Implants -- 4.2. Implants in Patients with Osteoporosis -- 4.3. Immediate Post-Extraction Implants -- 5. IMPLANTS INSERTED IN GRAFTED SITES -- 5.1. Sinus Augmentation Procedures -- 5.2. Iliac Grafts -- 6. IMPLANTS IN SMOKERS -- 7. PERI-IMPLANT SOFT TISSUES -- REFERENCES -- FINITE ELEMENT ANALYSIS IN DENTAL IMPLANT BIOMECHANICS -- 1. INTRODUCTION -- 2. FEA BASIC CONCEPTS -- 2.1. Individualized Finite Element Modeling -- 2.2. Bone Geometry -- 2.3. Implant System Geometry and Positioning -- 2.4. Materials Properties of Bone and Implant Components -- 2.5. Interface Conditions -- 2.6. Loading and Boundary Condition -- 2.7. Convergence Study -- 2.8. Reference Values for FEA Results -- 2.9. Statistical Analysis in FEAs -- CONCLUSION -- REFERENCES -- STRAIN MEASUREMENT AND ELECTRIC RESISTANCE STRAIN GAUGES -- 1. INTRODUCTION -- 2. BASIC DEFINITIONS AND TERMINOLOGY -- 2.1. Continuum -- 2.2. Stress -- 2.3. Strain.

2.4. Constitutive Relation (Material Law) -- 3. STRAIN MEASUREMENT -- 3.1. Strain Measuring Techniques -- 3.2. Basic Characteristics of Strain Measuring Devices -- 3.2.1. Gauge Length -- 3.2.2. Gauge Sensitivity -- 3.2.3. Measuring Range -- 3.2.4. Accuracy -- 3.2.5. Precision (Repeatability) -- 3.3. Electric Resistance Strain Gauges -- 3.3.1 Brief History -- 3.3.2. Basic Theory -- 3.3.3. Typical Strain Gauges -- 3.4. Measuring Circuits -- 3.4.1. The Wheatstone Bridge -- 3.4.2. Quarter Bridge -- 3.4.3. Half Bridge with a Dummy Gauge -- 3.4.4. Half Bridge with Two Active Gauges -- 3.4.5. Full Bridge -- 3.4.5. The Potentiometer Circuit -- 3.4.6. Constant Current Potentiometer Circuit -- 3.4.7. Double Constant Current Circuit -- 3.5. Calibration -- 3.5.1. Direct Calibration -- 3.5.2. Indirect Calibration -- 3.6. Strain Gauge Arrangements for Different Stress States -- 3.6.1. Uniaxial Stress State -- 3.6.2. Biaxial Stress State -- 3.6.3. General Plane Stress State -- 3.7. Strain Gauge Installation Guidelines -- 3.7.1. Solvent Degreasing -- 3.7.2. Surface Abrading -- 3.7.3. Gauge Location Layout Lines -- 3.7.4. Surface Conditioning -- 3.7.5. Neutralizing -- 3.7.6. Handling the Gauge -- 3.8. Sources of Measurement Errors -- 3.8.1. Electrical Sources of Errors -- 3.8.2. Electrostatic Noise -- 3.8.3. Electromagnetic Noise -- 3.8.4. Electrical Resistance of Measuring Equipment -- 3.8.5. Effect of Lead Wire Resistance -- 3.8.6. Thermal Effects on Lead Wire Resistances -- 3.8.7. Strain Gauge Thermal Output -- 3.8.8. Gauge Factor Variation with Temperature -- 3.8.9. Corrections for Transverse Strain Effects -- 3.8.10. Reinforcement Effects of Strain Gauges -- 3.9. Strain Gauge Excitation Levels -- 3.10. Gauge Selection -- Operating Temperature -- Strain State -- Other Factors -- 3.11. Force and Torque Measurements Using Strain Gauges.

3.11.1 Link Type Load Cell -- 3.11.2. Beam Type Load Cell -- 3.11.3. Torque Cells -- 3.11.4. Simultaneous Force and Moment Measurement -- ACKNOWLEDGEMENT -- REFERENCES -- Further Reading on Electric Resistance Strain Gauges -- PHOTOELASTIC STRESS ANALYSIS -- 1. INTRODUCTION -- 2. POLARIZATION OF LIGHT -- 3. REMARKS FOR PREPARATION OF MODELS AND PHOTOGRAPHY -- 4. PHOTOELASTIC FRINGES -- REFERENCES -- RELIABILITY OF EXPERIMENTAL STRESS/STRAIN DATA -- 1. INTRODUCTION -- 2. LIMITS OF EXPERIMENTAL STRESS ANALYSIS METHODS ON BONE/IMPLANT BIOMECHANICS -- 2.1. Photoelastic Stress Analysis -- 2.2. Strain-Gauge Analysis -- 2.2.1. Apparent Strain and Fatigue Life -- 2.2.2. Limits of Application -- 2.3. FE Stress Analysis -- 2.3.1. FE Modeling -- 2.3.2. Individualized FE Modeling -- 2.3.3. Implementation of Bone Remodeling Theories -- 3. COMPARISON OF EXPERIMENTAL STRESS ANALYSIS TECHNIQUES FOR COMPATIBILITY AND VALIDITY -- 3.1. Comparison of Solely Experimental Stress Analysis Techniques -- 3.1.1. Photoelastic Stress Analysis Versus in Vitro Strain-Gauge Analysis -- 3.1.2. FE Stress Analysis Versus in Vitro/Ex Vivo Strain-Gauge Analysis -- 3.1.3. FE Analysis Versus Photoelastic Stress Analysis -- 3.2. Comparison of the Experimental Stress/Strain Data of Engineering Methods with in Vivo "Biological" Findings for Validation -- 3.3. Theoretical Models with Tissue Differentiation or Bone Remodeling Theories -- REFERENCES -- TREATMENT PLANNİNG FOR IMPLANT-SUPPORTED FİXED AND REMOVABLE PROSTHESES -- 1. INTRODUCTION -- 2. DEVELOPMENT OF TREATMENT CONCEPTS FOR THE EDENTULOUS JAW -- 3. ASPECTS OF TREATMENT PLANNING -- 4. OVERDENTURES -- 4.1. Indications for Overdentures -- 4.2. Mandibular Overdentures -- 4.3. Maxillary Overdentures -- 4.4. Number / Distribution of İmplants -- 4.4.1. Mandible -- 4.4.2. Maxilla -- 4.4.2.1. Anterior Concept -- 4.4.2.2. Posterior Concept.

4.4.2.3. Comparison with the Mandible.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Electronic Access:
Click to View
Holds: Copies: