Cover image for Nanobeam X-Ray Scattering : Probing Matter at the Nanoscale.
Nanobeam X-Ray Scattering : Probing Matter at the Nanoscale.
Title:
Nanobeam X-Ray Scattering : Probing Matter at the Nanoscale.
Author:
Stangl, Julian.
ISBN:
9783527655090
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (284 pages)
Contents:
Nanobeam X-Ray Scattering -- Contents -- Foreword -- Preface -- 1 Introduction -- 1.1 X-ray Interaction with Matter -- 1.1.1 Transmission of X-ray -- 1.1.2 Diffraction of X-rays -- 1.1.3 X-ray Elemental Sensitivity -- 1.2 Diffraction at Different Lengthscales and Real-Space Resolution -- 1.2.1 How to Produce an X-ray Nanobeam -- 1.2.2 Experiments with Nanobeams -- 1.2.3 Coherence Properties of Small Beams -- 1.2.4 Side Issues ? -- 1.3 Future Developments -- 2 X-ray Diffraction Principles -- 2.1 A Brief Introduction to Diffraction Theory -- 2.1.1 Interference of X-ray Waves -- 2.2 Kinematic X-ray Diffraction Theory -- 2.2.1 The Structure Factor -- 2.2.2 The Form Factor -- 2.2.3 Reciprocal Lattice of Nanostructures -- 2.2.4 The Phase Problem -- 2.3 Reflectivity -- 2.4 Properties of X-ray Beams -- 2.5 A Note on Coherence -- 2.5.1 Longitudinal Coherence and Wavelength Distribution -- 2.5.2 Longitudinal Coherence Length -- 2.5.3 Transverse Coherence and Thermal Sources -- 2.5.4 Transverse Coherence Length -- 2.6 X-ray Sources -- 2.7 Diffraction Measurement: How to Access q in a Real Experiment -- 2.7.1 Diffraction Geometries -- 2.7.2 Lengthscales -- 3 X-ray Focusing Elements Characterization -- 3.1 Introduction and Context -- 3.2 Refractive X-ray Lenses -- 3.2.1 Characterization of Focusing Elements -- 3.2.2 Spherical Refractive X-ray Lenses -- 3.2.3 Parabolic Compound Refractive Lenses (CRL) -- 3.2.4 Kinoform Lenses -- 3.2.5 Characteristics of the Refractive Lenses -- 3.3 X-ray Mirrors. Reflection of X-rays at Surfaces -- 3.3.1 Reflective X-ray Optics (Kirkpatrick-Baez Mirrors) -- 3.3.2 Capillaries -- 3.3.3 Waveguides (Resonators) -- 3.3.4 Other Reflective Optical Elements -- 3.4 Diffractive X-ray Optics -- 3.4.1 Fresnel Zone Plates -- 3.4.2 Hologram of a Point Object -- 3.4.3 Quantities Characterizing a Binary Zone Plate.

3.4.4 Multilevel Zone Plate -- 3.4.5 Getting a Clean and Intense Focused Beam with ZPs -- 3.4.6 Bragg-Fresnel Lenses -- 3.4.7 Multilayer Laue Lenses -- 3.4.8 Photon Sieves -- 3.4.9 Beam Compressors -- 3.5 Other X-ray Optics -- 3.6 Measuring the Size of the X-ray Focused Spot -- 3.7 Conclusion -- 4 Scattering Experiments Using Nanobeams -- 4.1 From the Ensemble Average Approach towards the Single Nanostructure Study -- 4.1.1 A Motivation for the Use of Small X-ray Beams -- 4.1.2 Required Focused Beam Properties -- 4.2 Scanning X-ray Diffraction Microscopy -- 4.3 Finite Element Based Analysis of Diffraction Data -- 4.4 Single Structure Inside a Device -- 4.5 Examples from Biology -- 4.6 Recent Experiments: The Current Limits -- 4.6.1 Strain Distribution in Nanoscale Ridges -- 4.6.2 Between Single Structure and Ensemble Average -- 4.7 Outlook -- 4.7.1 Experimental Developments -- 5 Nanobeam Diffraction Setups -- 5.1 Introduction -- 5.2 Typical X-ray Diffraction Setup -- 5.3 Nanodiffraction Setup Requirements -- 5.3.1 Diffractometer -- 5.3.2 Restriction of Setup -- 5.3.3 Stability: How to Keep the Beam on the Sample -- 5.3.4 Beating Drifts: More Solutions -- 5.4 Nanobeam and Coherence Setup -- 5.5 Detectors: Pixel and Time Resolution, Dynamical Range -- 5.6 Some Intrinsic Issues -- 5.6.1 Angular Divergence -- 5.6.2 Beam Damage -- 5.7 Sample Environment: Specific Solutions for Nanobeams? -- 6 Spectroscopic Techniques Using Focused Beams -- 6.1 Introduction and Context -- 6.1.1 Requirements of Spectroscopy Compared to Diffraction -- 6.2 Scanning X-ray Microscopy with Various Contrasts -- 6.2.1 Very Specific Contrast Signals -- 6.3 Soft X-rays Used for Imaging with Magnetic Contrast -- 7 Coherent Diffraction: From Phase Sensitivity to Phase Retrieval -- 7.1 Matter in the Light of Coherent X-rays -- 7.1.1 Coherent versus Incoherent Illumination.

7.1.2 Formalism -- 7.1.3 Typical Coherent Nanofocusing Setup -- 7.1.4 Data Acquisition: From Fourier Space to Direct Space -- 7.2 Exploiting the Phase Sensitivity: Statistical Investigation of Defects in Matter -- 7.3 Encoding the Phase Directly: The Holographic Approach -- 7.3.1 Inline Holography -- 7.3.2 Off-axis Holography -- 7.3.3 Fourier Transform Holography -- 7.4 Support-based Phase Retrieval Coherent Diffraction Imaging -- 7.4.1 Principles -- 7.4.2 Phase Retrieval Algorithms -- 7.4.3 Imaging the Morphology of Nanomaterials -- 7.4.4 Imaging Strain in Nanocrystals -- 7.5 Fresnel Coherent Diffraction Imaging -- 7.6 Ptychography -- 8 Lensless Microscopy Imaging: Context and Limits -- 8.1 Resolution and Sensitivity -- 8.2 Experimental Design -- 8.2.1 Coherence and Flux -- 8.2.2 Sample Environment -- 8.2.3 Stability: Beam, Mechanics -- 8.3 How to Model: Defining the Physics Scheme -- 8.3.1 Illumination Wavefield -- 8.3.2 The Kinematics Approximation -- 8.3.3 Refraction Effects -- 8.3.4 Fresnel versus Far-field Regime -- 8.4 Phase Retrieval Strategies -- 9 Future Developments -- 9.1 Nanobeams: Hopes and Doubts -- 9.1.1 Smaller and Brighter Beams -- 9.1.2 Quality Control -- 9.1.3 Side Issues -- 9.2 Beamlines at Third-generation Synchrotron Sources -- 9.3 The Role of Free Electron Lasers -- 9.4 Conclusion -- Abbreviation list -- References -- Index.
Abstract:
A comprehensive overview of the possibilities and potential of X-ray scattering using nanofocused beams for probing matter at the nanoscale, including guidance on the design of nanobeam experiments. The monograph discusses various sources, including free electron lasers, synchrotron radiation and other portable and non-portable X-ray sources. For scientists using synchrotron radiation or students and scientists with a background in X-ray scattering methods in general.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: