Cover image for Chemistry of Organo-hybrids : Synthesis and Characterization of Functional Nano-Objects.
Chemistry of Organo-hybrids : Synthesis and Characterization of Functional Nano-Objects.
Title:
Chemistry of Organo-hybrids : Synthesis and Characterization of Functional Nano-Objects.
Author:
Charleux, Bernadette.
ISBN:
9781118870051
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (548 pages)
Contents:
Chemistry of Organo-Hybrids -- Contents -- Preface -- Contributors -- 1 Covalent Organic Functionalization and Characterization of Carbon Nanotubes -- 1.1 Introduction -- 1.2 Covalent Functionalization of Carbon Nanotubes with Organic Molecules -- 1.2.1 Defect-Site Chemistry -- 1.2.2 Halogenation -- 1.2.3 Arylation -- 1.2.4 Cycloaddition Reactions -- 1.2.5 Radical Addition -- 1.2.6 Nucleophilic and Electrophilic Additions -- 1.2.7 Plasma Functionalization and Mechanochemical Treatment -- 1.3 Characterization of Functionalized Carbon Nanotubes -- 1.3.1 Spectroscopic Techniques -- 1.3.2 Microscopic Techniques -- 1.3.3 Thermal Techniques -- 1.4 Conclusion -- References -- 2 Functionalized Graphenes -- 2.1 Starting Materials -- 2.2 Characterization -- 2.3 Functionalization -- 2.3.1 Functionalization on the Carbon Framework -- 2.3.2 Functionalization Involving an Oxygenated Function -- 2.4 Conclusion -- References -- 3 Nanodiamonds: Emergence of Functionalized Diamondoids and Their Unique Applications -- 3.1 Introduction -- 3.2 Historical Background: From the Synthesis of Detonation Nanodiamond to the Isolation and Characterization of Higher Diamondoids -- 3.2.1 Nanodiamond versus Diamondoids: The Case of Polymantanes -- 3.2.2 Synthesis of Polymantanes versus Extraction from the Geosphere -- 3.2.3 Diamondoid Nomenclature and Characterization -- 3.3 Functionalization of Adamantane, Diamantane, and Higher Diamondoids -- 3.3.1 Diamondoid Halides -- 3.3.2 Hydroxylated Diamondoids -- 3.3.3 Metallated Nucleophilic Diamondoids -- 3.3.4 Amino and Nitro Diamondoids and Their Derivatives -- 3.3.5 Polyfunctionalized Diamondoids with Different Reactive Functionalities -- 3.3.6 Alkyl-, Aryl-, Olefin-, Phosphine-, Cyano-, and Thiol-Substituted Diamondoids -- 3.4 Organohybrids Built on Nanodiamond and Diamondoids and Their Applications.

3.4.1 Biological Applications of Nanodiamond and Diamondoid-Based Hybrids -- 3.4.2 Polymeric Diamondoid Materials -- 3.4.3 Molecular Mechanics and Electronics Innovations from Diamond Nanoassembly -- 3.4.4 Synthetic and Catalytic Applications Associated to Modified Diamondoids -- Abbreviations -- References -- 4 Titania-Based Hybrid Materials: From Molecular Precursors To The Controlled Design of Hierarchical Hybrid Materials -- 4.1 Introduction -- 4.2 Overview of the Reactivity of Precursors and Consequences on Structures at Large scale of Titanium-Based OXO-Polymers -- 4.2.1 The Real Nature of the Precursor Ti(OR)4 -- 4.2.2 Chemical Additives as Inhibitors of Condensation -- 4.3 Main Chemical Routes for the Synthesis of Titania-Based Hybrid Materials -- 4.3.1 Route A -- 4.3.2 Route B -- 4.3.3 Route C -- 4.3.4 Route D -- 4.4 Titania-Based Hybrid Mesostructured Materials -- 4.4.1 Overview -- 4.4.2 Evaporation-Induced Self-Assembly (EISA) -- 4.4.3 Hybrid O-I Titania-Based POMTFs -- 4.5 Conclusion -- References -- 5 Functionalization of Zirconium Oxide Surfaces -- 5.1 Introduction -- 5.2 Why Zirconia-organic Hybrids? -- 5.2.1 Mechanical Properties -- 5.2.2 Chemical Properties -- 5.2.3 Optical and Electrical Properties -- 5.2.4 Biological Properties -- 5.3 Characterization of Zirconia-Based Inorganic-Organic Hybrids -- 5.3.1 Characterization of the Functionalization -- 5.3.2 Characterization of the Morphology -- 5.4 Synthetic Strategies Toward Zirconia-Organic Hybrids -- 5.4.1 Direct Functionalization of the Inorganic Part -- 5.4.2 Direct Synthesis of the Organic Polymer on the Inorganic -- 5.4.3 Synthesis of the Inorganic Part During Functionalization by the Organic Moiety -- 5.5 Summary -- References -- 6 Functional Metal-Organic Frameworks: Synthesis and Reactivity -- 6.1 Introduction -- 6.2 Organic Functional Groups.

6.2.1 MOFs with N-Functionalization -- 6.2.2 Azido- and Alkyne-MOFs: ``Click'' Chemistry -- 6.2.3 MOFs with Aldehyde Functionalization -- 6.2.4 MOFs with Halogen Functionalization -- 6.2.5 MOFs with Alkane Functionalization -- 6.2.6 MOFs with Sulfide Functionalization -- 6.2.7 MOFs with Alcohol Functionalization -- 6.2.8 MOFs with Alkene Functionalization -- 6.2.9 Other Reactions -- 6.3 Inorganic Functional Groups -- 6.3.1 Functional Metal Species Within the Framework -- 6.3.2 Inorganic PSM at the Organic Linkers -- 6.4 Conclusion -- Abbreviations -- References -- 7 Surface Chemistry of Colloidal Semiconductor Nanocrystals: Organic, Inorganic, and Hybrid -- 7.1 Organic Surface Functionalization of Colloidal Nanocrystals -- 7.1.1 Semiconductor-Organic Ligand Binding Energies -- 7.1.2 Organic Ligands -- 7.1.3 Ligand Exchange with Organic Ligands on Solid Nanocrystal Films -- 7.2 Solution NMR Analysis of Surface Ligands -- 7.2.1 Introduction -- 7.2.2 Tightly Bound Ligands -- 7.2.3 Ligands in Fast Exchange -- 7.2.4 Titrations and Dilutions as Means to Address Ligand Binding -- 7.3 Inorganic Functionalization of Colloidal Nanocrystals -- 7.3.1 Anionic Inorganic Capping Ligands -- 7.3.2 Ligand-Free Surfaces -- 7.3.3 Colloidal Behavior of NCs with Inorganic and Hybrid Organic/Inorganic Functionalization -- 7.3.4 Prospects of Inorganically Functionalized Nanocrystals for Electronic and Optoelectronic Applications -- References -- 8 Covalent Organic Functionalization of Nucleic Acids -- 8.1 Introduction -- 8.2 Introduction of Reactive Groups in the Oligonucleotide -- 8.2.1 Introduction of Reactive Group by Solid Phase Synthesis -- 8.2.2 Introduction of Reactive Groups by Enzymatic Synthesis -- 8.2.3 Introduction of Reactive Group by Semi-synthesis, Involving an Enzymatic Ligation -- 8.3 Covalent Modification of Reactive Oligonucleotides.

8.3.1 Amine- and Thiol-Based Approaches -- 8.3.2 Cycloaddition Reactions -- 8.3.3 The Staudinger Ligation -- 8.3.4 The Oxime Linkage -- 8.3.5 Organometallic Couplings -- 8.3.6 Native Chemical Ligation -- 8.4 Purification and Analysis of Oligonucleotide Conjugates -- 8.5 Conclusions -- References -- 9 Chemoselective Protein Modifications: Methods and Applications for the Functionalization of Viral Capsids -- 9.1 Introduction -- 9.2 Chemical Modifications of Peptides and Proteins -- 9.2.1 Selective Transformation of Natural Amino Acids -- 9.2.2 N-Terminal Protein Modifications -- 9.2.3 Site-Selective Modifications Using Enzymes -- 9.3 Incorporation of Unnatural Amino Acids -- 9.3.1 Site-Directed and Residue-Specific Incorporation -- 9.3.2 Bioorthogonal Reactions -- 9.4 Conclusion -- Acknowledgments -- References -- 10 Cyclodextrins-Metal Hybrids -- 10.1 Cyclodextrins Polyfunctionalizations -- 10.1.1 Capping Methods -- 10.1.2 Bulky Protecting Groups -- 10.1.3 Regioselective Deprotection Strategies -- 10.2 Multivalent Metallo-Cyclodextrin Hybrids -- 10.2.1 Cyclodextrins as Platforms -- 10.2.2 Cyclodextrins as Host of the Ligand -- 10.2.3 Cyclodextrins as Metal Hosts -- 10.3 Cyclodextrins as Metallo-Enzyme Mimics -- 10.3.1 Esterase Mimics -- 10.3.2 Phosphatase Mimics -- 10.3.3 Cobalamin-Based Mimics -- 10.3.4 Carbonic Anhydrase Mimics -- 10.3.5 Redox Enzyme Mimics -- 10.4 Usual Analytical Techniques -- References -- 11 Post-Functionalization of Polymers via Orthogonal Ligation Chemistry -- 11.1 Introduction -- 11.2 Cycloaddition Reactions -- 11.2.1 1,3-Dipolar Cycloadditions -- 11.2.2 Diels-Alder Reactions -- 11.3 THIOL Chemistry -- 11.3.1 The Thiol Group -- 11.3.2 Thiol-Ene -- 11.3.3 Thiol-Yne -- 11.3.4 Thio-Bromo -- 11.3.5 Thio-Isocyanate -- 11.3.6 Thio-Pentafluorostyrene -- 11.3.7 Thio-Epoxide -- 11.4 Metathesis (ROMP, ADMET).

11.4.1 Ring-Opening Metathesis Polymerization -- 11.4.2 Acyclic Diene Metathesis -- 11.5 OXIME Chemistry -- 11.6 PD-Catalyzed Coupling and Cross-Coupling Reactions -- 11.7 Conclusions -- References -- 12 Polymer-Protein/Peptide Bioconjugates -- 12.1 Introduction -- 12.2 Polymer-Protein/Peptide Bioconjugates by a Covalent Linkage -- 12.2.1 Bioconjugation with Preformed Polymer and Protein/Peptide: The "Grafting To" Method -- 12.2.2 Polymerization from Native Protein/Peptide: the "Grafting from" Method -- 12.2.3 Polymerization of Peptide-Based Monomers: the "Grafting Through" Method -- 12.2.4 In Situ Synthesis of Polymer-Peptide Bioconjugates -- 12.3 Polymer-Protein Peptide Bioconjugates by a Non-covalent Linkage -- 12.3.1 Binding via the "Grafting to" Method -- 12.3.2 Binding via the "Grafting from" Method -- 12.4 Conclusions -- Abbreviations -- References -- 13 Hybrid Materials Built From (Phosphorus) Dendrimers -- 13.1 Introduction -- 13.2 Covalent Grafting of Dendrimers to Inorganic Surfaces -- 13.3 Electrostatic Grafting of Dendrimers to Inorganic Surfaces -- 13.4 Electrodeposition of Dendrimers onto Inorganic Electrodes -- 13.5 Inclusion of Dendrimers Inside Inorganic Materials -- 13.6 Dendrimers for the Elaboration and Stabilization of Metallic Nanoparticles -- 13.7 Conclusion -- References -- Index -- EULA.
Abstract:
This book provides readers with a one-stop entry into the chemistry of varied hybrids and applications, from a molecular synthetic standpoint  Describes introduction and effect of organic structures on specific support components (carbon-based materials, proteins, metals, and polymers).  Chapters cover hot topics including nanodiamonds, nanocrystals, metal-organic frameworks, peptide bioconjugates, and chemoselective protein modification  Describes analytical techniques, with pros and cons, to validate synthetic strategies  Edited by internationally-recognized chemists from different backgrounds (synthetic polymer chemistry, inorganic surfaces and particles, and synthetic organic chemistry) to pull together diverse perspectives and approaches.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: