Cover image for Introduction to Scanning Tunneling Microscopy.
Introduction to Scanning Tunneling Microscopy.
Title:
Introduction to Scanning Tunneling Microscopy.
Author:
Chen, C. Julian.
ISBN:
9780198023562
Personal Author:
Physical Description:
1 online resource (469 pages)
Series:
Oxford Series in Optical and Imaging Sciences ; v.No.4

Oxford Series in Optical and Imaging Sciences
Contents:
Contents -- List of Figures -- Gallery of STM Images -- 1 Overview -- 1.1 The scanning tunneling microscope in a nutshell -- 1.2 Tunneling: an elementary model -- 1.3 Probing electronic structure at an atomic scale -- 1.3.1 Semiconductors -- 1.3.2 Metals -- 1.3.3 Organic molecules -- 1.3.4 Layered materials -- 1.4 Spatially resolved tunneling spectroscopy -- 1.5 Lateral resolution: Early theories -- 1.5.1 The Stall Formula -- 1.5.2 The s-wave-tip model -- 1.6 Origin of atomic resolution in STM -- 1.7 Tip-sample interaction effects -- 1.8 Historical remarks -- 1.8.1 Imaging individual atoms -- 1.8.2 Metal-vacuum-metal tunneling -- PART I: IMAGING MECHANISM -- 2 Atom-scale tunneling -- 2.1 Introduction -- 2.2 The perturbation approach -- 2.3 The image force -- 2.4 The Square-barrier problem -- 2.5 The modified Bardeen approach -- 2.6 Effect of image force on tunneling -- 3 Tunneling matrix elements -- 3.1 Introduction -- 3.2 Tip wavefunctions -- 3.3 Green's function and tip wavefunctions -- 3.4 The derivative rule: individual cases -- 3.5 The derivative rule: general case -- 3.6 An intuitive interpretation -- 4 Wavefunctions at surfaces -- 4.1 Types of surface wavefunctions -- 4.2 The jellium model -- 4.3 Concept of surface states -- 4.4 Field emission spectroscopy -- 4.5 Photoemission studies -- 4.6 Atom-beam diffraction -- 4.7 First-principles theoretical studies -- 5 Imaging crystalline surfaces -- 5.1 Types of STM images -- 5.2 Surfaces with one-dimensional corrugation -- 5.3 Surfaces with tetragonal symmetry -- 5.4 Surfaces with hexagonal or trigonal symmetry -- 5.5 Corrugation inversion -- 5.6 The s-wave-tip model -- 6 Imaging atomic states -- 6.1 Slater atomic wavefunctions -- 6.2 Profiles of atomic states as seen by STM -- 6.3 The Na-atom-tip model -- 6.4 Images of surfaces: Independent-orbital approximation -- 7 Atomic forces and tunneling.

7.1 Effect of atomic force in STM -- 7.2 Attractive atomic force as a tunneling phenomenon -- 7.3 Attractive atomic force and tunneling conductance -- 8 Tip-sample interactions -- 8.1 Local modification of sample wavefunction -- 8.2 Deformation of tip and sample surface -- PART II : INSTRUMENTATION -- 9 Piezoelectric scanner -- 9.1 Piezoelectric effect -- 9.2 Lead zirconate titanate ceramics -- 9.3 Tripod scanner -- 9.4 Bimorph -- 9.5 Tube scanner -- 9.6 In situ testing and calibration -- 9.7 Resonance frequencies -- 9.8 Repoling a depoled piezo -- 10 Vibration isolation -- 10.1 Basic concepts -- 10.2 Environment vibration -- 10.3 Suspension springs -- 10.4 Stacked plate - elastomer system -- 10.5 Pneumatic systems -- 11 Electronics and control -- 11.1 Current amplifier -- 11.2 Feedback circuit -- 11.3 Computer interface -- 12 Coarse positioner and STM design -- 12.1 The louse -- 12.2 Level motion-demagnifier -- 12.3 Single-tube STM -- 12.4 Spring motion demagnifier -- 12.5 Inertial steppers -- 12.6 The lnchworm® -- 13 Tip treatment -- 13.1 Introduction -- 13.2 Electrochemical tip etching -- 13.3 Ex situ tip treatments -- 13.4 In situ tip treatments -- 14 Scanning tunneling spectroscopy -- 14.1 Electronics for scanning tunneling spectroscopy -- 14.2 Nature of the observed tunneling spectra -- 14.3 Tip treatment for spectroscopy studies -- 14.4 The Feenstra parameter -- 14.5 Ex situ determination of the tip DOS -- 14.6 In situ determination of tip DOS -- 15 Atomic force microscopy -- 15.1 Introduction -- 15.2 Tip and cantilever -- 15.3 Deflection detection methods -- 15.4 AFM at the liquid-solid interface -- 16 Illustrative applications -- 16.1 Surface structure determination -- 16.2 Nucleation and crystal growth -- 16.3 Local tunneling spectra of superconductors -- 16.4 Surface chemistry -- 16.5 Organic molecules -- 16.6 Electrochemistry.

16.7 Biological applications -- Appendix A: Real wavefunctions -- Appendix B: Green's functions -- Appendix C: Spherical modified Bessel functions -- Appendix D: Two-dimensional Fourier series -- Appendix E: Plane groups and invariant functions -- E.I A brief summary of plane groups -- E.2 Invariant functions -- Appendix F: Elementary elasticity theory -- F.1 Normal stress and normal strain -- F.2 Shear stress and shear strain -- F.3 Small deflection of beams -- F.4 Vibration of beams -- F.5 Torsion -- F.6 Helical springs -- F.7 Contact stress: The Hertz formulas -- Appendix G: A short table of Laplace transforms -- Appendix H: Operational amplifiers -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Y.
Abstract:
A graduate-level introduction to scanning tunnelling microscopy, which explains how the method's ability to map microscopic surfaces non-destructively has found major applications in physics, surface science, materials science, biology, chemistry and engineering.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: