Cover image for Nanomedicine : Design and Applications of Magnetic Nanomaterials, Nanosensors and Nanosystems.
Nanomedicine : Design and Applications of Magnetic Nanomaterials, Nanosensors and Nanosystems.
Title:
Nanomedicine : Design and Applications of Magnetic Nanomaterials, Nanosensors and Nanosystems.
Author:
Varadan, Vijay K.
ISBN:
9780470715628
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (485 pages)
Contents:
Nanomedicine -- Contents -- Preface -- About the Authors -- 1 Introduction -- 1.1 What is Nanoscience and Nanotechnology? -- 1.1.1 Nanoscale: Where Physical and Biological Sciences Meet -- 1.1.2 Nanoscience -- 1.1.3 Nanotechnology -- 1.1.4 Typical Approaches for Synthesis of Nanomaterials -- 1.1.5 Interdisciplinarity of Nanoscience and Nanotechnology -- 1.2 Magnets and Nanometers: Mutual Attraction -- 1.3 Typical Magnetic Nanomaterials -- 1.3.1 Nanospheres -- 1.3.2 Nanorods and Nanowires -- 1.3.3 Nanotubes -- 1.3.4 Thin Films -- 1.4 Nanomedicine and Magnetic Nanomedicine -- 1.4.1 Inspiration from Nature -- 1.4.2 What is Nanomedicine? -- 1.4.3 Status of Nanomedicine -- 1.4.4 Magnetic Nanomedicine -- 1.5 Typical Biomedical Applications of Functional Magnetic Nanomaterials -- 1.5.1 Diagnostic Applications of Magnetic Nanoparticles -- 1.5.2 Therapeutic Applications of Magnetic Nanoparticles -- 1.5.3 Magnetic Biosensors and Biochips Based on Magnetic Thin Films -- 1.5.4 Trends of the Biomedical Applications of Magnetic Nanomaterials -- 2 Physical Background for the Biomedical Applications of Functional Magnetic Nanomaterials -- 2.1 Requirements for Biomedical Applications -- 2.1.1 Magnetic Particles and Ferrofluids -- 2.1.2 Biocompatibility and Chemical Stability -- 2.1.3 Magnetic Properties -- 2.1.4 Physical Properties -- 2.2 Fundamentals of Nanomagnetism -- 2.2.1 Basic Concepts of Nanomagnetism -- 2.2.2 Superparamagnetism -- 2.2.3 Nanoparticle Assemblies -- 2.2.4 Colloidal Magnetic Nanoparticles -- 2.2.5 Heating Mechanisms for Hyperthermia -- 2.3 Magnetic Relaxation of Ferrofluids -- 2.3.1 Debye Theory -- 2.3.2 Magnetic Relaxations of Magnetic Fluids -- 2.3.3 Ferromagnetic Resonances -- 2.3.4 Characterization of the Electromagnetic Responses of Ferrofluids -- 2.4 Magnetorheology of Ferrofluids.

2.4.1 Effects of Magnetic Field on Ferrofluid Viscosity -- 2.4.2 Rheometers for the Study of Magnetorheology Fluids -- 2.5 Manipulation of Magnetic Particles in Fluids -- 2.5.1 Magnetic Nanoparticles and Microparticles -- 2.5.2 Forces on Magnetic Particles by Magnetic Fields -- 2.5.3 Mechanism of Magnetic Manipulation -- 2.6 Interactions Between Biological Nanomaterials and Functionalized Magnetic Nanoparticles -- 2.6.1 Surface Coating -- 2.6.2 Targeting to Cell Receptors -- 2.6.3 Targeted Cell Uptake -- 2.6.4 Interactions Between Magnetic Nanoparticles and Cell Membranes -- 3 Magnetic Nanoparticles -- 3.1 Introduction -- 3.2 Basics of Nanomagnetics -- 3.2.1 Classification of Magnetic Nanoparticles -- 3.2.2 Single-domain Particles -- 3.2.3 Superparamagnetism -- 3.3 Synthesis Techniques -- 3.3.1 Chemical Methods -- 3.3.2 Biological Methods -- 3.4 Synthesis of Magnetic Nanoparticles -- 3.4.1 Synthesis of Magnetic Monometallic Nanoparticles -- 3.4.2 Synthesis of Magnetic Alloy Nanoparticles -- 3.4.3 Synthesis of Magnetic Oxide Nanoparticles -- 3.4.4 Synthesis of Magnetic Core-shell Nanoparticles -- 3.5 Bio-inspired Magnetic Nanoparticles -- 3.6 Functionalization of Magnetic Nanoparticles -- 3.6.1 Functionalized with Organic Molecules -- 3.6.2 Functionalized with Biological Entities -- 3.7 Future Prospects -- 4 Biomedical Applications of Magnetic Nanoparticles -- 4.1 Introduction -- 4.2 Diagnostic Applications -- 4.2.1 Enhancement of Magnetic Resonance Imaging -- 4.2.2 Magnetic Labeling -- 4.2.3 Spatially Resolved Magnetorelaxometry -- 4.2.4 Magnetic Separation and Purification -- 4.2.5 Biological Assay System -- 4.2.6 Biosensors -- 4.3 Therapeutic Applications -- 4.3.1 Drug and Gene Target Delivery -- 4.3.2 Hyperthermia Treatment -- 4.3.3 Eye Surgery -- 4.3.4 Antitumor Effects -- 4.4 Physiological Aspects -- 4.5 Toxic Effects.

5 Magnetosomes and their Biomedical Applications -- 5.1 Introduction -- 5.1.1 Magnetotactic Bacteria and Magnetosomes -- 5.1.2 Basic Properties of Magnetosomes -- 5.1.3 Magnetotaxis and Magneto-aerotaxis -- 5.2 Magnetosome Formation -- 5.2.1 Biochemistry and Gene Expression -- 5.2.2 Formation Procedure -- 5.2.3 Cell Biology of Magnetosomes (Komeili 2007) -- 5.3 Cultivation of Magnetotactic Bacteria -- 5.3.1 Mass Cultivation of Magnetotactic Bacteria -- 5.3.2 Continuous Cultivation of Magnetotactic Bacteria -- 5.4 Characterization of Magnetosomes -- 5.4.1 Biochemical Characterization -- 5.4.2 Microstructure Characterization -- 5.4.3 Magnetization Characterization -- 5.4.4 Susceptibility Characterization -- 5.4.5 Trajectory Characterization -- 5.5 Biomedical Applications of Magnetosomes -- 5.5.1 Applications of Magnetic Cells -- 5.5.2 Applications of Isolated Magnetosome Particles -- 6 Magnetic Nanowires and their Biomedical Applications -- 6.1 Introduction -- 6.1.1 Arrayed and Dispersed Nanowires -- 6.1.2 Single-segment, Multi-segment and Multi-layer Nanowires -- 6.1.3 Other Nanowire Structures -- 6.2 Magnetism of Magnetic Nanowires -- 6.2.1 Shape Anisotropy -- 6.2.2 Switching in Single-domain Particles (Sun et al. 2005) -- 6.2.3 Magnetization Hysteresis Loops -- 6.2.4 Multiple-segment Nanowires -- 6.3 Template-based Synthesis of Magnetic Nanowires -- 6.3.1 Fabrication of Nanoporous Templates -- 6.3.2 Electrochemical Deposition -- 6.3.3 Electroprecipitation -- 6.3.4 Self-assembly of Nanowires -- 6.4 Characterization of Magnetic Nanowires -- 6.4.1 Electrical Properties -- 6.4.2 Magnetization Properties -- 6.4.3 Ferromagnetic Resonance -- 6.5 Functionalization of Magnetic Nanowires -- 6.5.1 Chemical Functionalization -- 6.5.2 Biological Functionalization -- 6.5.3 Assembly by Surface Chemistry -- 6.6 Magnetic Nanowires in Suspension.

6.6.1 Responses of Magnetic Nanowires in Suspension -- 6.6.2 Magnetic Trapping of Nanowires -- 6.6.3 Self-assembled Magnetic Nanowire Arrays -- 6.6.4 Electromagnetic Micromotor -- 6.7 Biomedical Applications of Magnetic Nanowires -- 6.7.1 Confinement of Magnetic Nanoparticles -- 6.7.2 Biomolecular Manipulation -- 6.7.3 Suspended Biosensing System (Tok et al. 2006) -- 6.7.4 Gene Delivery -- 6.7.5 Hybrid Devices -- 7 Magnetic Nanotubes and their Biomedical Applications -- 7.1 Introduction -- 7.2 Magnetism of Nanotubes -- 7.3 Multifunctionality of Magnetic Nanotubes -- 7.3.1 Inner and Outer Surfaces of Nanotubes -- 7.3.2 Magnetic Encapsulated Nanotubes -- 7.4 Synthesis and Characterization of Magnetic Nanotubes -- 7.4.1 Single Element Magnetic Nanotubes -- 7.4.2 Magnetic Oxide Nanotubes -- 7.4.3 Alloyed Magnetic Nanotubes -- 7.4.4 Doped Magnetic Nanotubes -- 7.4.5 Hybrid Magnetic Nanotubes -- 7.5 Biomedical Applications of Magnetic Nanotubes -- 7.5.1 Bioseparation -- 7.5.2 Cell Manipulation -- 7.5.3 Drug and Gene Delivery -- 7.5.4 Neuronal Applications -- 7.5.5 Magnetic Force Microscope -- 8 Magnetic Biosensors -- 8.1 Introduction -- 8.1.1 Biosensors and Magnetic Biosensors -- 8.1.2 Magnetic Biosensing Schemes -- 8.1.3 Magnetic Properties of a Magnetic Bead -- 8.1.4 Typical Types of Magnetic Biosensors -- 8.1.5 Sensor Sensitivity and Dynamic Range -- 8.2 Magnetoresistance-based Sensors -- 8.2.1 Giant Magnetoresistance Sensor -- 8.2.2 Anisotropic Magnetoresistance Sensor -- 8.2.3 Spin Valve Sensor -- 8.2.4 Magnetic Tunnel Junction Sensor -- 8.3 Hall Effect Sensors -- 8.3.1 Silicon Hall Effect Sensor -- 8.3.2 Planar Hall Effect Sensor -- 8.3.3 Extraordinary Hall Effect Sensor -- 8.3.4 Quantum Well Hall Effect Sensor -- 8.4 Other Sensors Detecting Stray Magnetic Fields -- 8.4.1 Giant Magnetoimpedance Sensor -- 8.4.2 Frequency Mixing Method.

8.4.3 Superconducting Quantum Interference Detectors -- 8.5 Sensors Detecting Magnetic Relaxations -- 8.5.1 SQUID MRX -- 8.5.2 Fluxgate MRX -- 8.6 Sensors Detecting Ferrofluid Susceptibility -- 8.6.1 Theoretical Background -- 8.6.2 Slit Toroid Method -- 8.6.3 Coil Methods -- 8.6.4 PPMS Method -- 9 Magnetic Biochips: Basic Principles -- 9.1 Introduction -- 9.1.1 Sensor Arrays and Integrated Biochips -- 9.1.2 Manipulation of Biomolecules -- 9.1.3 Detection of Biomolecules -- 9.2 Biochips Based on Giant Magnetoresistance Sensors -- 9.3 Biochips Based on Spin Valve Sensors -- 9.4 Biochips Based on Magnetic Tunnel Junctions -- 9.5 Fully Integrated Biochips -- 10 Biomedical Applications of Magnetic Biosensors and Biochips -- 10.1 Introduction -- 10.2 DNA Analysis -- 10.3 Protein Analysis and Protein Biochips -- 10.4 Virus Detection and Cell Analysis -- 10.5 Study of the Interactions Between Biomolecules -- 10.6 Detection of Biological Warfare Agents -- 10.7 Environmental Monitoring and Cleanup -- 10.8 Outlook -- Appendix-Units for Magnetic Properties -- Index.
Abstract:
Recent advances in nanomedicine offer ground-breaking methods for the prevention, diagnosis and treatment of some fatal diseases. Amongst the most promising nanomaterials being developed are magnetic  nanomaterials, including magnetic nanoparticles and magnetic nanosensors. Some nanomagnetic medical applications are already commercially available with more set to be released over the coming years. Nanomedicine, Design and Applications of Magnetic Nanomaterials, Nanosensors and Nanosystems presents a comprehensive overview of the biomedical applications of various types of functional magnetic materials. The book provides an introduction to magnetic nanomaterials before systematically discussing the individual materials, their physical and chemical principles, fabrication techniques and biomedical applications. This methodical approach allows this book to be used both as a textbook for beginners to the subject and as a convenient reference for professionals in the field. Discusses magnetic nanoparticles including nanowires, nanotubes, zero-dimensional nanosperes and naturally existing magnetosomes. Examines intrinsically smart magnetic materials and describes their part in the development of biomedical sensors and biochips, which are often used in biomedical tests. Integrates the research efforts of different disciplines - from materials sciences to biology and electrical engineering to medicine -  in order to provide a unified and authoritative guide to a richly interdisciplinary field. This volume is of great appeal to students and researchers in the fields of electrical and electronic engineering, biomedical engineering, nanotechnology, materials science, physics, medicine and biology. It is also of interest to practising engineers, materials scientists, chemists and research medical doctors involved in the development of magnetic

materials and structures for biomedical applications.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: