Cover image for FRACTURE MECHANICS OF ELECTROMAGNETIC MATERIALS : NONLINEAR FIELD THEORY AND APPLICATIONS.
FRACTURE MECHANICS OF ELECTROMAGNETIC MATERIALS : NONLINEAR FIELD THEORY AND APPLICATIONS.
Title:
FRACTURE MECHANICS OF ELECTROMAGNETIC MATERIALS : NONLINEAR FIELD THEORY AND APPLICATIONS.
Author:
Chen, Xiaohong.
ISBN:
9781848166646
Personal Author:
Physical Description:
1 online resource (326 pages)
Contents:
Contents -- Foreword -- Preface -- List of Tables -- List of Figures -- Chapter 1: Fundamentals of Fracture Mechanics -- 1.1 Historical Perspective -- 1.2 Stress Intensity Factors (SIF) -- 1.3 Energy Release Rate (ERR) -- 1.4 J-Integral -- 1.5 Dynamic Fracture -- 1.6 Viscoelastic Fracture -- 1.7 Essential Work of Fracture (EWF) -- 1.8 Configuration Force (Material Force) Method -- 1.9 Cohesive Zone and Virtual Internal Bond Models -- Chapter 2 : Elements of Electrodynamics of Continua -- 2.1 Notations -- 2.1.1 Eulerian and Lagrangian descriptions -- 2.1.2 Electromagnetic field -- 2.1.3 Electromagnetic body force and couple -- 2.1.4 Electromagnetic stress tensor and momentum vector -- 2.1.5 Electromagnetic power -- 2.1.6 Poynting theorem -- 2.2 Maxwell Equations -- 2.3 Balance Equations of Mass, Momentum, Moment of Momentum, and Energy -- 2.4 Constitutive Relations -- 2.5 Linearized Theory -- Chapter 3 : Introduction to Thermoviscoelasticity -- 3.1 Thermoelasticity -- 3.2 Viscoelasticity -- 3.3 Coupled Theory of Thermoviscoelasticity -- 3.3.1 Fundamental principles of thermodynamics -- 3.3.2 Formulation based on Helmholtz free energy functional -- 3.3.3 Formulation based on Gibbs free energy functional -- 3.4 Thermoviscoelastic Boundary-Initial Value Problems -- Chapter 4 : Overview on Fracture of Electromagnetic Materials -- 4.1 Introduction -- 4.2 Basic Field Equations -- 4.3 General Solution Procedures -- 4.4 Debates on Crack-Face Boundary Conditions -- 4.5 Fracture Criteria -- 4.5.1 Field intensity factors -- 4.5.2 Path-independent integral -- 4.5.3 Mechanical strain energy release rate -- 4.5.4 Global and local energy release rates -- 4.6 Experimental Observations -- 4.6.1 Indentation test -- 4.6.2 Compact tension test -- 4.6.3 Bending test -- 4.7 Nonlinear Studies -- 4.7.1 Electrostriction/magnetostriction.

4.7.2 Polarization/magnetization saturation -- 4.7.3 Domain switching -- 4.7.4 Domain wall motion -- 4.8 Status and Prospects -- Chapter 5 : Crack Driving Force in Electro-Thermo-Elastodynamic Fracture -- 5.1 Introduction -- 5.2 Fundamental Principles of Thermodynamics -- 5.3 Energy Flux and Dynamic Contour Integral -- 5.4 Dynamic Energy Release Rate Serving as Crack Driving Force -- 5.5 Configuration Force and Energy-Momentum Tensor -- 5.6 Coupled Electromechanical Jump/Boundary Conditions -- 5.7 Asymptotic Near-Tip Field Solution -- 5.8 Remarks -- Chapter 6 : Dynamic Fracture Mechanics of Magneto-Electro-Thermo-Elastic Solids -- 6.1 Introduction -- 6.2 Thermodynamic Formulation of Fully Coupled Dynamic Framework -- 6.2.1 Field equations and jump conditions -- 6.2.2 Dynamic energy release rate -- 6.2.3 Invariant integral -- 6.3 Stroh-Type Formalism for Steady-State Crack Propagation under Coupled Magneto-Electro-Mechanical Jump/Boundary Conditions -- 6.3.1 Generalized plane crack problem -- 6.3.2 Steady-state solution -- 6.3.3 Path-independent integral for steady crack growth -- 6.4 Magneto-Electro-Elastostatic Crack Problem as a Special Case -- 6.5 Summary -- Chapter 7 : Dynamic Crack Propagation in Magneto-Electro-Elastic Solids -- 7.1 Introduction -- 7.2 Shear Horizontal Surface Waves -- 7.3 Transient Mode-III Crack Growth Problem -- 7.4 Integral Transform, Wiener-Hopf Technique, and Cagniard-de Hoop Method -- 7.5 Fundamental Solutions for Traction Loading Only -- 7.6 Fundamental Solutions for Mixed Loads -- 7.7 Evaluation of Dynamic Energy Release Rate -- 7.8 Influence of Shear Horizontal Surface Wave Speed and Crack Tip Velocity -- Chapter 8 : Fracture of Functionally Graded Materials -- 8.1 Introduction -- 8.2 Formulation of Boundary-Initial Value Problems -- 8.3 Basic Solution Techniques -- 8.4 Fracture Characterizing Parameters.

8.4.1 Field intensity factors -- 8.4.2 Dynamic energy release rate -- 8.4.3 Path-domain independent integral -- 8.5 Remarks -- Chapter 9 : Magneto-Thermo-Viscoelastic Deformation and Fracture -- 9.1 Introduction -- 9.2 Local Balance Equations for Magnetic, Thermal, and Mechanical Field Quantities -- 9.3 Free Energy and Entropy Production Inequality for Memory-Dependent Magnetosensitive Materials -- 9.4 Coupled Magneto-Thermo-Viscoelastic Constitutive Relations -- 9.5 Generalized J -Integral in Nonlinear Magneto-Thermo-Viscoelastic Fracture -- 9.6 Generalized Plane Crack Problem and Revisit of Mode-III Fracture of a Magnetostrictive Solid in a Bias Magnetic Field -- Chapter 10 : Electro-Thermo-Viscoelastic Deformation and Fracture -- 10.1 Introduction -- 10.2 Local Balance Equations for Electric, Thermal, and Mechanical Field Quantities -- 10.3 Free Energy and Entropy Production Inequality for Memory-Dependent Electrosensitive Materials -- 10.4 Coupled Electro-Thermo-Viscoelastic Constitutive Relations -- 10.5 Generalized J -Integral in Nonlinear Electro-Thermo-Viscoelastic Fracture -- 10.6 Analogy between Nonlinear Magneto- and Electro-Thermo-Viscoelastic Constitutive and Fracture Theories -- 10.7 Reduction to Dorfmann-Ogden Nonlinear Magneto- and Electro-elasticity -- Chapter 11 : Nonlinear Field Theory of Fracture Mechanics for Paramagnetic and Ferromagnetic Materials -- 11.1 Introduction -- 11.2 Global Energy Balance Equation and Non-Negative Global Dissipation Requirement -- 11.3 Hamiltonian Density and Thermodynamically Admissible Conditions -- 11.3.1 Generalized functional thermodynamics -- 11.3.2 Generalized state-variable thermodynamics -- 11.4 Thermodynamically Consistent Time-Dependent Fracture Criterion -- 11.5 Generalized Energy Release Rate versus Bulk Dissipation Rate.

11.6 Local Generalized J -Integral versus Global Generalized J -Integral -- 11.7 Essential Work of Fracture versus Nonessential Work of Fracture -- Chapter 12 : Nonlinear Field Theory of Fracture Mechanics for Piezoelectric and Ferroelectric Materials -- 12.1 Introduction -- 12.2 Nonlinear Field Equations -- 12.2.1 Balance equations -- 12.2.2 Constitutive laws -- 12.3 Thermodynamically Consistent Time-Dependent Fracture Criterion -- 12.4 Correlation with Conventional Fracture Mechanics Approaches -- Chapter 13 : Applications to Fracture Characterization -- 13.1 Introduction -- 13.2 Energy Release Rate Method and its Generalization -- 13.3 J-R Curve Method and its Generalization -- 13.4 Essential Work of Fracture Method and its Extension -- 13.5 Closure -- Bibliography -- Index.
Abstract:
Fracture Mechanics of Electromagnetic Materials provides a comprehensive overview of fracture mechanics of conservative and dissipative materials, as well as a general formulation of nonlinear field theory of fracture mechanics and a rigorous treatment of dynamic crack problems involving coupled magnetic, electric, thermal and mechanical field quantities.Thorough emphasis is placed on the physical interpretation of fundamental concepts, development of theoretical models and exploration of their applications to fracture characterization in the presence of magneto-electro-thermo-mechanical coupling and dissipative effects. Mechanical, aeronautical, civil, biomedical, electrical and electronic engineers interested in application of the principles of fracture mechanics to design analysis and durability evaluation of smart structures and devices will find this book an invaluable resource.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: