Cover image for Radiation Processing of Polymer Materials and Its Industrial Applications.
Radiation Processing of Polymer Materials and Its Industrial Applications.
Title:
Radiation Processing of Polymer Materials and Its Industrial Applications.
Author:
Makuuchi, Keizo.
ISBN:
9781118162859
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (445 pages)
Contents:
Radiation Processing of Polymer Materials and its Industrial Applications -- Contents -- Preface -- Abbreviations -- 1: Basic Concepts of Radiation Processing -- 1.1: Radiation Sources -- 1.1.1: γ- Ray -- 1.1.2: Electron Beam -- 1.1.3: X-Ray -- 1.2: Radiation Chemistry of Polymers -- 1.2.1: Interactions of Ionizing Radiation with Polymers and Reactions Induced -- 1.2.2: Different Responses to Radiation from Different Polymers -- 1.3: Advantages and Disadvantages of Radiation Processing -- 1.4: Engineering of Radiation Processing -- 1.4.1: Materials Handling -- 1.4.2: Radiation Dose and Dose Distribution -- 1.4.3: Throughput -- 1.4.4: Temperature Rise -- 1.4.5: Atmosphere -- 1.4.6: Dose Rate -- 1.4.7: Radiation Processing Cost -- References -- 2: Fundamentals of Radiation Crosslinking -- 2.1: Radiation Chemistry of Crosslinking -- 2.1.1: Types of Crosslinking -- 2.1.2: Evidence of Crosslinking -- 2.2: Crosslinking of Polymer -- 2.2.1: Crosslinking of Semicrystalline Polymer -- 2.2.1.1: Peroxide Crosslinking -- 2.2.1.2: Silane Crosslinking -- 2.2.1.3: Technical Comparison of Crosslinking Methods -- 2.2.2: Crosslinking of Rubber -- 2.2.2.1: Radiation Crosslinking Versus Sulfur Crosslinking -- 2.2.2.2: Radiation Crosslinking Versus Peroxide Crosslinking -- 2.3: Estimation of G Value of Crosslinking -- 2.3.1: Charlesby-Pinner Method -- 2.3.2: Modification of Charlesby-Pinner Equation -- 2.3.3: Swelling and Elasticity Methods -- 2.4: Factors Affecting Radiation Crosslinking -- 2.4.1: Physical Nature of Polymer -- 2.4.1.1: Glass-Transition Temperature -- 2.4.1.2: Crystallinity -- 2.4.2: Chemical Composition of Polymer -- 2.4.2.1: Bond Energy -- 2.4.2.2: Unsaturation -- 2.4.2.3: Methyl Group -- 2.4.2.4: Halogen Atom -- 2.4.2.5: Phenyl Group -- 2.4.2.6: Ester and Ether Bond -- 2.4.2.7: Copolymer -- 2.4.2.8: Ethylene Copolymer -- 2.4.2.9: Fluoropolymer.

2.4.2.10: Silicone Rubber -- 2.4.2.11: Branching -- 2.4.3: Molecular Weight and Molecular Weight Distribution -- 2.4.4: Configuration -- 2.4.4.1: Structural Isomerism -- 2.4.4.2: Stereoisomerism -- References -- 3: Enhancement of Radiation Crosslinking -- 3.1: Concept of Enhancement of Radiation Crosslinking -- 3.2: Increasing Number of Polymer Radicals -- 3.2.1: Sensitizer -- 3.2.2: Postirradiation Heat Treatment -- 3.3: Increasing Recombination of Polymer Radicals -- 3.3.1: Compression -- 3.3.2: High-Temperature Irradiation -- 3.3.3: Plasticizer -- 3.3.4: Polyfunctional Monomer -- 3.4: Filler Effect -- 3.4.1: Modification of Superstructure -- 3.4.2: Direct Bonding to Amorphous Polymers -- 3.5: Hybrid Crosslinking -- 3.6: Selection of Antioxidant -- 3.7: Advanced Radiation Crosslinking -- References -- 4: Properties of Radiation Crosslinked Polymers -- 4.1: Radiation Crosslinked Rubbers -- 4.1.1: Radiation Crosslinking of Rubbers -- 4.1.2: Properties of Radiation Crosslinked Rubbers with PFM -- 4.1.3: Silicone Rubber -- 4.1.4: Fluoroelastomer -- 4.2: Radiation Crosslinked Plastics -- 4.2.1: Physical Properties of Crosslinked Polymers at Room Temperature -- 4.2.1.1: Mechanical Properties -- 4.2.1.2: Crystallinity -- 4.2.1.3: Melting Temperature -- 4.2.1.4: Cold Resistance, Hardness, and Creep -- 4.2.1.5: Wear -- 4.2.1.6: Environmental Stress-Cracking Resistance -- 4.2.1.7: Electrical Properties -- 4.2.2: Physical Properties of Crosslinked Polymers at High Temperature -- 4.2.2.1: Melt Flow Onset Temperature and Hot Set -- 4.2.2.2: Mechanical Properties above Melting Temperature -- 4.2.3: Biodegradability of Crosslinked Biodegradable Plastic -- 4.3: Radiation Crosslinked PVC -- 4.4: Radiation Crosslinked Engineering Plastic -- 4.5: Radiation Crosslinked PTFE -- References -- 5: Application of Radiation Crosslinking.

5.1: Heat-Shrinkable Plastic Products -- 5.1.1: Crosslinking for Shape Memory -- 5.1.2: Processes for Introducing Shape Memory Effect -- 5.1.3: Heat-Shrinkable Tubing and Film -- 5.1.4: Biomedical Applications -- 5.1.5: Potential Industrial Applications -- 5.2: Plastic Foams -- 5.2.1: Crosslinking for Plastic Foams -- 5.2.2: Foaming -- 5.2.3: Radiation Crosslinking Versus Peroxide Crosslinking -- 5.2.4: Advanced Foams-Microcellular Foams -- 5.3: Wire and Cable -- 5.3.1: Radiation Crosslinked Wires and Cables -- 5.3.2: Development of Environmentally Friendly Wires and Cables -- 5.3.2.1: Lead-Free PVC Wires -- 5.3.2.2: Heat-Resistant Halogen-Free Wires -- 5.3.2.3: Power Harnesses for Hybrid Electric Vehicle -- 5.3.3: Syndiotactic PP for Wire and Cable -- 5.4: Polyethylene Pipe -- 5.4.1: Application and Properties of Crosslinked Polyethylene Pipe -- 5.4.2: Irradiation Processing of Polyethylene Pipe -- 5.5: Radial Tires -- 5.5.1: Irradiation of Body Ply -- 5.5.2: Benefit and Cost Analysis of Radiation Crosslinking -- 5.6: O-Rings -- References -- 6: New Application of Radiation Crosslinking -- 6.1: Positive Temperature Coefficient Polymer Products -- 6.1.1: Crosslinking for PTC -- 6.1.1.1: Carbon Black -- 6.1.1.2: Percolation Threshold -- 6.1.1.3: PTC and NTC -- 6.1.1.4: Effect of Crosslinking on NTC -- 6.1.2: Effects of Process Factors on PTC -- 6.1.2.1: Conductive Filler -- 6.1.2.2: Mixing -- 6.1.2.3: Blending of Polymers -- 6.1.2.4: Irradiation -- 6.1.2.5: Annealing -- 6.1.3: Advantages of Radiation Crosslinking -- 6.1.4: Applications of PTC Devices -- 6.2: SiC-Based High Temperature Resistant Fibers -- 6.2.1: Process -- 6.2.2: Properties -- 6.3: Artificial Joint -- 6.3.1: Artificial Hip and Knee Joint -- 6.3.2: UHMWPE for Artificial Joints -- 6.3.3: Highly Crosslinked UHMWPE -- 6.3.4: Crosslinked UHMWPE -- 6.3.5: Addition of Vitamin E.

6.3.6: High-Pressure Crystallized UHMWPE -- 6.3.6.1: Uniaxial Compression of Crosslinked UHMWPE -- 6.3.6.2: Isostatic Compression -- 6.3.7: Compression with Vitamin E -- 6.3.8: Clinical Introduction of Radiation Crosslinked UHMWPE -- 6.3.9: Advantages of Radiation Crosslinking -- References -- 7: Chain Scission and Oxidation -- 7.1: Chemistry and General Technology -- 7.2: Synthetic Polymers -- 7.2.1: PTFE -- 7.2.2: Polypropylene -- 7.2.3: Butyl Rubber -- 7.2.4: Other Synthetic Polymers -- 7.3: Cellulose and its Derivatives -- 7.3.1: Cellulose -- 7.3.2: Cellulose Derivatives -- 7.4: Polymer Stability Concerns for Radiation Sterilization -- 7.4.1: Polypropylene -- 7.4.2: Poly(Vinyl Chloride) -- 7.4.3: Polyethylene -- 7.4.4: Other Polymers -- References -- 8: Long-Chain Branching of Polymer Resins -- 8.1: Radiation Chemistry of Branching -- 8.1.1: Polypropylene -- 8.1.1.1: Irradiation in an Oxygen-Free or Reduced-Oxygen Atmosphere -- 8.1.1.2: Irradiation in a Melted State -- 8.1.1.3: Irradiation with the Addition of a Branching Promoter -- 8.1.2: Polyethylene -- 8.1.2.1: Irradiation in an Oxygen-Free or Reduced-Oxygen Atmosphere -- 8.1.2.2: Irradiation in Air -- 8.1.3: Other Polymers -- 8.2: Effects on Rheology -- 8.2.1: Polypropylene -- 8.2.2: Polyethylene -- 8.2.3: Other Polymers -- 8.3: Processability Implications -- 8.4: Application Examples -- 8.4.1: Extrusion Coating -- 8.4.2: Foaming -- 8.4.3: Film Blowing -- 8.4.4: Other Applications -- References -- 9: Radiation Processing of Aqueous Polymer Systems -- 9.1: Radiation Chemistry of Aqueous Polymer Systems -- 9.2: Crosslinking of Polymer Dissolved in Water -- 9.2.1: Radiation Processing of Hydrogel -- 9.2.2: Properties of Hydrogels -- 9.2.3: Applications -- 9.2.4: Industrial Competitiveness -- 9.3: Degradation of Polysaccharide Dissolved in Water -- 9.3.1: Radiation Process.

9.3.2: Properties and Applications of Radiation-Degraded Polysaccharides -- 9.3.3: Industrial Competitiveness -- 9.4: Crosslinking of Polymers Dispersed in Water -- 9.4.1: Radiation Vulcanization of Natural Rubber Latex -- 9.4.2: Mechanical Properties of RVNR Latex Products -- 9.4.3: Safety of RVNR Latex Products -- 9.4.4: Reduction in Extractable Proteins -- 9.4.5: Commercial Applications of RVNRL -- 9.4.6: Economic Aspects of RVNRL -- 9.4.7: Industrial Competitiveness -- References -- 10: Curing of Composites and Adhesives -- 10.1: Radiation Chemistry of Curing -- 10.2: Advanced Composites -- 10.2.1: Advantages of Radiation Curing -- 10.2.2: Aerospace Applications -- 10.2.3: Military Applications -- 10.2.4: Other advanced composite applications -- 10.3: Wood and Natural Fiber Composites -- 10.3.1: Wood-Plastic Composites -- 10.3.2: Natural Fiber-Plastic Composites -- 10.4: Adhesives -- 10.4.1: Aerospace and Automotive Applications -- 10.4.2: Wood Adhesive Applications -- 10.5: Other Applications and Commercialization Challenges -- 10.5.1: Other Applications -- 10.5.2: Commercialization Challenges -- References -- 11: Radiation Graft Polymerization -- 11.1: Radiation Chemistry of Graft Polymerization -- 11.2: Grafting in Solution -- 11.2.1: Effective Use of Polymer Radicals -- 11.2.2: Enhancements of Rate and Degree of Grafting -- 11.2.2.1: Irradiation Atmosphere, Dose, and Dose Rate -- 11.2.2.2: Reaction Temperature -- 11.2.2.3: Solvent -- 11.2.2.4: Monomer Concentration -- 11.2.2.5: Additives -- 11.2.3: Suppression of Homopolymer Formation -- 11.3: Grafting in Emulsion -- 11.3.1: Enhanced Grafting in Emulsion -- 11.3.2: Physical Chemistry of Grafting in Emulsion -- 11.3.3: Advanced Grafting in Suspension -- 11.4: Grafting onto Inorganic Particles -- 11.4.1: Silica -- 11.4.2: Magnesia -- 11.4.3: Carbon.

11.5: Application of Radiation Graft Polymerization.
Abstract:
Up-to-date, comprehensive coverage on radiation-processed polymer materials and their applications Offering a unique perspective of the industrial and commercial applications of the radiation processing of polymers, this insightful reference examines the fundamental scientific principles and cutting-edge developments advancing this diverse field. Through a variety of case studies, detailed examples, and economic feasibility analysis, Radiation Processing of Polymer Materials and Its Industrial Applications systematically explains the commercially viable ways to process and use radiation-processed polymeric materials in industrial products. In addition, this one-of-kind text: Covers important chemistry and processing fundamentals, while emphasizing their translation into practical applications of radiation-processed polymers Incorporates new applications in nanotechnology, biomaterials, and recycling Systematically discusses new developments in the field and summarizes past achievements By helping readers-from students to scientists, engineers, technicians, and sales and marketing professionals-understand and solve problems associated with radiation processing of polymers, Radiation Processing of Polymer Materials and Its Industrial Applications serves as an essential reference and fills an important gap in the literature.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: