Cover image for Physical and Chemical Processes in Gas Dynamics.
Physical and Chemical Processes in Gas Dynamics.
Title:
Physical and Chemical Processes in Gas Dynamics.
Author:
Chernyi, G. G.
ISBN:
9781600864476
Personal Author:
Physical Description:
1 online resource (316 pages)
Series:
Progress in Astronautics and Aeronautics ; v.196

Progress in Astronautics and Aeronautics
Contents:
Cover -- Title -- Copyright -- Contents -- Preface -- Chapter 1 General Notions and Essential Quantities -- I. Particles and Processes Under Consideration -- II. Physical Quantities, Notations, and Units of Measurement -- A. Physical Quantities -- B. Physical Constants and Units of Measure -- III. Description and Characteristics of Interacting Particles -- A. General Notation of Particles -- B. Extended Notation of Particle States (Subscripts/Superscripts) -- C. Electronic, Vibrational, and Rotational States -- D. Statistical Weight (Multiplicity) of Electronic States -- E. Statistical Weight (Multiplicity), Vibrational Frequency, Vibrational Energy, and Characteristic Vibrational Temperature of Molecules and Molecular Ions -- F. Statistical Weight (Multiplicity), Rotational Energy, and Characteristic Rotational Temperature of Molecules and Molecular Ions -- IV. Classical Pattern of Binary Collisions of Particles -- V. Characteristic Dynamic Parameters -- A. Scales of Length and Time -- B. Characteristic Criteria -- VI. Particle Distribution over Velocities and Energy: Temperatures of Different Degrees of Freedom -- VII. Mean Relative Velocity of Particles in a Gas -- VIII. Partition Functions and the Mean Energy of Particles in a Gas -- A. Partition Functions -- B. Mean Energy of Particles (Per Particle) -- C. Assumptions -- IX. Heat of Reaction -- X. Relation Between Particle Number and Gas Pressure -- XI. Formulas for the Rate Constants of Specific Processes -- A. Rate Constant for Arbitrary Energy Dependence of the Process Cross Section -- B. Formulas for Cross Sections and Rate Constants -- References -- Chapter 2 Elastic Collisions in Gases and Plasmas (T Models) -- I. Elastic Collisions of Neutral Particles (X + Y-+X + Y) -- A. Hard-Sphere Model (T.1) -- B. Repulsive Power-Law Potential Model (T.2).

C. Hard-Sphere Model with Variable Diameter (T.3) -- D. Model Based on Lennard-Jones Potential (T.4) -- E. Model Based on Born-Mayer Potential (T.5) -- F. Model of Attracting Particles (T.6) -- II. Elastic Collisions Involving Charged Particles -- A. Effective Radius Approximation for Electron-Atom and Electron-Molecule Collisions (T.7) -- B. Classical Approximation for Electron-Molecule Collisions (T.8) -- C. Born Approximation for Electron-Molecule Collisions (T.9) -- D. Model of Electron Scattering by Molecule with High Dipole Moment (T.10) -- E. Classical Approximation for Ion-Atom and Ion-Molecule Collisions (T.11) -- F. Model Based on the Born-Mayer Repulsive Potential for Ion Collisions with Neutral Particles (T.12) -- G. Model Based on the Shielded Coulomb Potential (T.13) -- References -- Chapter 3 Rotational Energy Exchange (R Models) -- I. Excitation of Molecular Rotations in Collision of Neutral Particles (XY(j) + M → XY(j′) + M) -- A. Model of Rough Spheres (R.1) -- B. Polanyi-Woodal Model (R.2) -- C. Exponential/Power-Law Model (R.3) -- D. Varshalovich-Khersonskii Model (R.4) -- E. Scaling Formulas in the Sudden Approximation (R.5) -- II. Excitation of Molecular Rotation by Electron Impact (XY(j) + e ->XY(J) + e) -- A. Gerjouy-Stein Formula (R.6) -- B. Formulas of Takayanagi and Crowford (R.7) -- III. Molecules and Molecular Ions Rotational Excitation in Ion-Atom and Ion-Molecule Collisions XY(y) + Z+ -> XY(/) + Z+, XY+(y) + Z -+ XY+(/) + Z -- References -- Chapter 4 Vibrational Energy Exchange (V Models) -- L Vibrational Energy Exchange in Collisions of Neutral Particles XY(m) + M XY(w) + M, XY(m) + M <& XY(w') + M, XY(iff) -1- AB(w) & XY(w') + AB(n') -- A. Landau-Teller Formula (V.1) -- B. Schwartz-Slawsky-Herzfeld (SSH) Theory (V.2) -- C. Generalized Schwartz-Slawsky-Herzfeld (SSH) Theory (V.3).

D. Adamovich-Macheret-Rich-Treanor Model (V.4) -- E. Model of Hindered Rotations (V.5) -- F. Generalized Model of Hindered Rotations (V.6) -- G. Scaling Laws for the Harmonic Oscillator Model (V.7) -- H. Scaling Laws for the Anharmonic Oscillator Model (V.8) -- II. Excitation of Molecular Vibrations by Electron Impact (AB(i -- ) + e -* AB(i/) + e) -- III. Vibrational Energy Exchange in Ion-Neutral Collisions (XY+(i -- ) + Z -> XY+(i/) + Z, XY(t -- ) + Z+ -» XY(t/) + Z+ X\~(v) + Z -> XY"(i/) + Z, XY(t?) + Z~ -> XY(t/) + Z~) -- A. Model of Capture of Particles (V.9) -- B. Statistical Model (V.10) -- References -- Chapter 5 Electronic Energy Exchange (E Models) -- I. Exchange of Electronic Energy in Atomic and Molecular Collisions -- II. Electronic ET and EE Energy Exchange in Atomic Collisions A + B* -* A + B and A + B* -* A* + B -- A. Landau-Zener Model (E.1) -- III. Exchange of Electronic, Vibrational, and Rotational Energy in Atom-Molecule Collisions [XYfo /') + Z -> XY(t/, /) + Z, XY(t -- XY Jxy) + ZZ'(t,zz/,yzzO -> XY(^Y,7xY) + ZZVzz'./zffM -- IV. Excitation of the Electronic States of Atoms, Ions, and Molecules, and Their Deactivation by Electron Impact (e + A -> A* + e, e + A+ -> A+* + e, e + XY -> XY* + e) -- A. Dravin Semi-Empirical Formulas (E.2) -- B. Quantum-Mechanical Theory for Optically Allowed Transitions Between Distant Levels (E.3) -- C. Model of Single-Quantum Transitions (E.4) -- D. Model of Electronic-Vibrational Excitation of Diatomic Molecules (E.5) -- E. Detailed Balancing Principle (E.6) -- References -- Chapter 6 Chemical Reactions (C Models) -- I. Bimolecular Reactions -- II. Thermally Equilibrium Bimolecular Exchange, Disproportionation, and Substitution Reactions (X + Y -+ Z + Z', AB + C -> AC + B, AB + CD -> AC + BD, -- A. Arrhenius Formula (C.1) -- B. Alfassi-Benson Methods (C.2).

C. Nonlinear Correlation Basing on Parabolic Model of the Transition Complex (C.3) -- D. Method of Reaction Series (C.4) -- E. Pre-Exponential Factor According to Kondrat'ev (C.5) -- F. Model of Reactive Hard Spheres (C.6) -- G. Model of Close Collisions (Orbiting Model) (C.7) -- H. Canonical Transition State Method (C.8) -- III. Recombination and Addition Reactions (X + Y + M-»XY + M, X + Y ^ XY) -- A. Application of the Detailed Balance Principle (C.9) -- B. Model of Termolecular Collisions for Recombination (C.10) -- IV. Dissociation of Diatomic Molecules in Thermal Equilibrium (AB + M → A + B + M) -- A. Ladder Excitation Model (C.11) -- B. Diffusion Model (C.12) -- V. Unimolecular Reactions: Decomposition and Isomerization of Polyatomic Molecules (XYZ + M -> XY + Z + M, XYZ -* XY + Z, XYZ + M -> YXZ + M, XYZ -» YXZ) -- A. Methods of the Statistical RRKM Theory -- B. Analytical Troe Model (C.13) -- C. Variational Model (C.14) -- D. Approximation Method for the Fall-Off Region (C.15) -- E. Lindemann-Hinshelwood Model of the Fall-Off Region Allowing for the Broadening Factor (C.16) -- F. Method of Reaction Series for Unimolecular Reactions (C.17) -- VI. Termolecular Reactions (X + Y + Z -> X' + Y') -- A. Model of Ternary Collision for Termolecular Reaction (C.18) -- VII. Chemical Reactions in the Absence of Equilibrium Between Vibrational and Translational Degrees of Freedom -- VIII. Models for Exchange Reactions in Thermal Nonequilibrium (XY(» + Z ^X + YZ, XY(tO+ZZ' ^XZ + YZ', X\(v) + ZZ' -> Z + XYZ') -- A. Model of the Efficiency of Vibrational Energy Utilization (α Model) (C.19) -- B. Macheret Formulas (C.20) -- IX. Models for Thermally Nonequilibrium Dissociation and Decomposition of Molecules (AB(v) + M-> A + B + M, XY(t -- ) + M-*X + Y + M) A. Model of the Distributed Dissociation Probability (Marrone-Treanor Model) (C.21).

A. Model of the Distributed Dissociation Probability (Marrone-Treanor Model) (C.21) -- B. Dissociation Model Based on the Concept of Truncated Harmonic Oscillator (β Model) (C.22) -- C. Dissociation Model Based on the Anharmonic Oscillator Concept (Kuznetsov Model) (C.23) -- D. Model of Two Dissociation Mechanisms Taking into Account Configuration of Colliding Particles (Macheret-Fridman Model) (C.24) -- E. Adiabatic Model of Dissociation (C.25) -- F. Kuznetsov Model for Thermally Nonequilibrium Decomposition of Polyatomic Molecules (C.26) -- X. General Models of Thermally Nonequilibrium Reactions + Z -> X + YZ, XY(v) + M-»X + Y + M) -- A. Generalized Marrone-Treanor (CVCV) Model (C.27) -- B. Intuitive Park Model (C.28) -- References -- Chapter 7 Plasma Chemical Reactions (P Models) -- I. Ionization in Collisions of Atoms and Molecules and Electron-Ion Recombination in Collisions Involving Neutral Particles -- II. lonization in Collisions of Neutral Unexcited Particles (X + Y ->X+ + Y + e) -- A. Estimate Based on the Massey Adiabatic Criterion (P.1) -- III. lonization in Collisions with a Resonant-Excited Atom (A* + B -> A + B+ + e) -- A. Dipole-Dipole Interaction Model (P.2) -- B. Capture Model (P.3) -- IV. Penning Ionization (A,* + B -+ A + B+ + e) -- A. Capture Model for Penning lonization (P.4) -- V. Associative Ionization (A + B -> AB+ + e, A* + B -> AB+ + e, A* + B* -* AB+ -he, X + Y -> XY+ + e) -- A. Model of Particle Repulsion (P.5) -- VI. Three-Body Recombination in Atomic and Molecular Gases (A+ + M + e -> A + M) -- A. Modified Pitaevskii Formula (P.6) -- B. Dalidchik-Sayasov Formulas (P.7) -- VII. Binary Recombination of Ions (A+ + B~ -» A + B, X+ + Y- -> X + Y) -- A. Coulomb Interaction Model (P.8) -- VIII. Ternary Recombination of Positive and Negative Ions (X+ + Y-+M-+X + Y + M, A+ + A- + A -> A + A + A).

A. Thomson-Natanson Formula (P.9).
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Electronic Access:
Click to View
Holds: Copies: