Cover image for Computational Neuroanatomy : The Methods.
Computational Neuroanatomy : The Methods.
Title:
Computational Neuroanatomy : The Methods.
Author:
Chung, Moo K.
ISBN:
9789814335447
Personal Author:
Physical Description:
1 online resource (424 pages)
Contents:
Contents -- Preface -- 1. Statistical Preliminary -- 1.1 General Linear Models -- 1.2 Random Fields -- 1.2.1 Covariance Functions -- 1.2.2 Gaussian Random Fields -- 1.2.3 Differentiation and Integration of Fields -- 1.2.4 Statistical Inference on Fields -- 1.3 Multiple Comparisons -- 1.3.1 Bonferroni Correction -- 1.3.2 Random Fields Theory -- 1.3.3 Poisson Clumping Heuristic -- 1.3.4 Euler Characteristic Method -- 1.3.5 Intrinsic Volume -- 1.3.6 Euler Characteristic Density -- 1.4 Statistical Power Analysis -- 1.4.1 Statistical Power at a Voxel -- 1.4.2 Statistical Power under Multiple Comparisons -- 2. Deformation-Based Morphometry -- 2.1 Image Registration -- 2.2 Deformation-Based Morphometry -- 2.3 Displacement Vector Fields -- 2.3.1 Dynamic Model on Displacement -- 2.3.2 Local Inference via Hotelling's T2-Field -- 2.3.3 Detecting Local Brain Growth -- 2.4 Global Inference via Integral Statistic -- 2.4.1 Karhunen-Lo eve Expansion -- 2.4.2 Mercer's Theorem -- 2.4.3 Integral Statistic on Displacement -- 3. Tensor-Based Morphometry -- 3.1 Jacobian Determinant -- 3.2 Distributional Assumptions -- 3.3 Local Volume Changes -- 3.4 Longitudinal Modeling -- 3.4.1 Normal Brain Development in Children -- 3.5 Global Inference via Divergence Theorem -- 3.6 Second Order Tensor Fields -- 3.6.1 Membrane Spline Energy -- 3.6.2 Vorticity Tensor Fields -- 3.6.3 Generalized Variance Field -- 4. Voxel-Based Morphometry -- 4.1 Image Segmentation -- 4.1.1 Mumford-Shah Model -- 4.1.2 Level Sets -- 4.1.3 Active Contours -- 4.1.4 Deformable Surface Models -- 4.1.5 Thin-Plate Spline Thresholding -- 4.2 Mixture Models -- 4.2.1 Bayesian Segmentation -- 4.2.2 Mixture Models -- 4.2.3 Expectation Maximization Algorithm -- 4.2.4 Two Components Gaussian Mixtures -- 4.3 Voxel-Based Morphometry -- 4.3.1 ROI Volume Estimation in VBM -- 4.3.2 Limitations of Witelson Partition.

4.3.3 General Linear Models on Tissue Densities -- 4.3.4 2D VBM Applied to Corpus Callosum -- 5. Geometry of Cortical Manifolds -- 5.1 Surface Parameterization -- 5.1.1 B-Spline Parameterization -- 5.1.2 B-Spline Curves -- 5.1.3 Quadratic Parameterization -- 5.1.4 Fourier Descriptors -- 5.2 Surface Normals and Curvatures -- 5.2.1 Surface Normals -- 5.2.2 Gaussian and Mean Curvatures -- 5.2.3 Curvatures of Polynomial Surfaces -- 5.3 Laplace-Beltrami Operator -- 5.3.1 Eigenfunctions of Laplace-Beltrami Operator -- 5.3.2 Multiplicity of Eigenfunctions -- 5.3.3 Laplace-Beltrami Shape Descriptors -- 5.3.4 Second Eigenfunctions -- 5.3.5 Dirichlet Energy -- 5.3.6 Fiedler's Vector -- 5.4 Finite Element Methods -- 5.4.1 Pieacewise Linear Functions -- 5.4.2 Mass and Stiffness Matrices -- 6. Smoothing on Cortical Manifolds -- 6.1 Gaussian Kernel Smoothing -- 6.1.1 Isotropic Gaussian Kernel -- 6.1.2 Anisotropic Gaussian Kernel -- 6.2 Diffusion Smoothing -- 6.2.1 Diffusion in Euclidean Space -- 6.2.2 Diffusion in 1D -- 6.2.3 Diffusion on Triangular Mesh -- 6.2.4 Finite Difference Scheme -- 6.3 Heat Kernel Smoothing -- 6.3.1 Heat Kernel -- 6.3.2 Heat Kernel Smoothing -- 6.3.3 Iterated Kernel Smoothing -- 6.3.4 Smoothing via Laplace-Beltrami Eigenfunctions -- 6.4 Smoothness of Random Fields -- 6.4.1 Resels of Field -- 6.4.2 Effective Bandwidth -- 6.4.3 Unbiased Estimator of eFWHM -- 6.5 Gaussianness of Random Fields -- 6.5.1 Quantiles -- 6.5.2 Empirical Distribution -- 6.5.3 Quantile Quantile Plots -- 6.5.4 Checking Gaussianness in Cortical Thickness -- 7. Surface-Based Morphometry -- 7.1 Surface Flattening -- 7.2 Cortical Thickness -- 7.2.1 Cortical Thickness via Laplace Equation -- 7.2.2 Cortical Thickness vs. Gray Matter Density -- 7.2.3 Distance Map -- 7.3 Partial Correlation Mapping -- 7.3.1 Partial Correlations -- 7.3.2 Statistical Inference on Correlations.

7.3.3 Brain-Behavior Correlations -- 7.3.4 Facial Emotion Discrimination Tasks -- 7.4 Tensor-Based Surface Morphometry -- 7.4.1 Surface Deformation -- 7.4.2 Metric Tensor Computation on Surfaces -- 7.4.3 Statistical Inference on Surfaces -- 7.4.4 Quantifying Brain Growth -- 7.4.5 Tensor Computation via SPHARM -- 7.5 Multivariate General Linear Models -- 7.5.1 Roy's Maximum Root -- 7.5.2 SurfStat -- 7.6 Mixed Effect Models on Surface Shape Change -- 7.6.1 Longitudinal Imaging Data -- 7.6.2 Mixed Effect Models -- 7.6.3 Restricted Maximum Likelihood Estimation -- 7.6.4 Longitudinal Hippocampus Shape Model -- 7.6.5 Functional Mixed Effect Models -- 7.7 Sparse Surface Shape Recovery -- 7.7.1 Sparse Regression on Surface Data -- 7.7.2 Effect of Aging on Hippocampus Shape -- 8. Weighted Fourier Representation -- 8.1 Fourier Series in Hilbert Space -- 8.2 Weighted Fourier Representation -- 8.2.1 Cauchy Problem -- 8.2.2 Heat Kernel Smoothing -- 8.2.3 Kernel Regression -- 8.2.4 Iterative Residual Fitting Algorithm -- 8.2.5 Best Model Selection -- 8.3 Weighted Spherical Harmonic Representation -- 8.3.1 Spherical Harmonics -- 8.3.2 Spherical Harmonic Representation -- 8.3.3 Iterative Residual Fitting on Spherical Harmonics -- 8.4 Gibbs Phenomenon -- 8.4.1 Reduction of Gibbs Phenomenon -- 8.4.2 The Overshoot of Gibbs Phenomenon -- 8.5 SPHARM Correspondance -- 8.6 Cortical Asymmetry -- 8.6.1 Hemisphere Correspondence -- 8.6.2 Abnormal Cortical Asymmetry in Autism -- 8.6.3 FWHM of Heat Kernel -- 8.7 Logistic Discriminant Analysis on Cortical Surface -- 8.7.1 Logistic Model -- 8.7.2 Maximum Likelihood Estimation -- 8.7.3 Best Model Selection -- 8.7.4 Classification Accuracy -- 8.8 Tiling Surfaces with Orthonormal Basis -- 8.8.1 Orhonormal Basis on a Sphere -- 8.8.2 Orthonormal Basis on Manifolds -- 8.8.3 Numerical Implementation -- 8.8.4 Pullback Representation.

8.9 Basis Function Expansion on Multiple Shells -- 8.9.1 Eigenfunction Expansion in a Solid Ball -- 8.9.2 Iterative Residual Fitting -- 8.9.3 3D Resampling of 2D Surface Data -- 9. Structural Brain Connectivity -- 9.1 White Matter Fiber Tractography -- 9.1.1 Diffusion Tensors -- 9.1.2 Streamlines -- 9.1.3 Probabilistic Methods -- 9.2 Probabilistic Connectivity -- 9.3 Cosine Series Representation of Fiber Tracts -- 9.3.1 Cosine Basis in a Unit Interval -- 9.3.2 Cosine Series Representation of 3D Curves -- 9.3.3 Optimal Degree Selection -- 9.3.4 Distance Between Tracts -- 9.3.5 Tract Registration -- 9.3.6 Limitation of Cosine Series Representation -- 9.4 Parcellation-Free Brain Networks -- 9.4.1 Why Parcellation Free? -- 9.4.2 Epsilon Neighbor Networks -- 9.4.3 Connected Components -- 9.4.4 Epsilon Filtration -- 9.4.5 Electrical Circuit Model for Fiber Tracts -- 9.5 Structural Brain Connectivity without DTI -- 9.5.1 Correlating Jacobian Determinants -- 9.5.2 Seed-Based Connectivity -- 9.5.3 Parcellation-Based Connectivity -- 9.5.4 Validation -- 9.5.5 RV-Coefficient -- 9.6 Network Complexity Measures -- 9.6.1 Degree Distribution -- 9.6.2 Small-Worldness -- 9.6.3 Fractal Dimension -- 9.6.4 Clustering Coefficient -- 9.7 Sparse Brain Network Models -- 9.7.1 Correlation Thresholding -- 9.7.2 Sparse Partial Correlation -- 9.7.3 Sparse Network Recovery -- 9.8 Dynamic Network Modeling -- 10. Topological Data Analysis -- 10.1 Detecting Topological Defect in Images -- 10.2 Expected Euler Characteristic -- 10.3 Rips Complex -- 10.3.1 Topology -- 10.3.2 Simplex -- 10.3.3 Rips complex -- 10.4 Persistence Diagrams -- 10.4.1 Morse Functions -- 10.4.2 Persistence Diagrams -- 10.4.3 Persistence Diagram for Cortical Thickness -- 10.4.4 Inference on Persistent Diagrams -- 10.5 Min-Max Diagrams -- 10.5.1 Why Critical Values?.

10.5.2 Iterative Pairing and Deletion Algorithm -- 10.5.3 Statistical Inference on Mix-Max Diagrams -- 10.6 Graph Filtrations -- 10.6.1 Weighted Graphs -- 10.6.2 Single Linkage Matrix -- 10.6.3 Persistent Brain Networks -- Bibliography -- Index.
Abstract:
Computational neuroanatomy is an emerging field that utilizes various non-invasive brain imaging modalities, such as MRI and DTI, in quantifying the spatiotemporal dynamics of the human brain structures in both normal and clinical populations. This discipline emerged about twenty years ago and has made substantial progress in the past decade. The main goals of this book are to provide an overview of various mathematical, statistical and computational methodologies used in the field to a wide range of researchers and students, and to address important yet technically challenging topics in further detail.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: