Cover image for Antioxidant Polymers : Synthesis, Properties, and Applications.
Antioxidant Polymers : Synthesis, Properties, and Applications.
Title:
Antioxidant Polymers : Synthesis, Properties, and Applications.
Author:
Cirillo, Giuseppe.
ISBN:
9781118445488
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (522 pages)
Contents:
Antioxidant Polymers: Synthesis, Properties, and Applications -- Contents -- Preface -- List of Contributors -- 1. Antioxidants: Introduction -- 1.1 The Meaning of Antioxidant -- 1.2 The Category of Antioxidants and Introduction of often Used Antioxidants -- 1.2.1 BHT -- 1.2.2 Quercetin -- 1.2.3 BHA -- 1.2.4 2-tert-Butylhydroquinone (TBHQ) -- 1.2.5 Gallic Acid -- 1.2.6 Resveratrol -- 1.2.7 Luteolin -- 1.2.8 Caffeic Acid -- 1.2.9 Catechin -- 1.3 Antioxidant Evaluation Methods -- 1.3.1 DPPH Radical Scavenging Assay -- 1.3.2 ABTS Radical Scavenging Activity -- 1.3.3 Phosphomolybdenum Assay -- 1.3.4 Reducing Power Assay -- 1.3.5 Total Phenols Assay by Folin-Ciocalteu Reagent -- 1.3.6 Hydroxyl Radical Scavenging Assay -- 1.3.7 β-carotene-linoleic Acid Assay -- 1.3.8 Superoxide Radical Scavenging Assay -- 1.3.9 Metal Ion Chelating Assay -- 1.3.10 Determination of Total Flavonoid Content -- 1.4 Antioxidant and its Mechanisms -- 1.4.1 Mechanism of Scavenging Free Radicals -- 1.4.2 Mechanism of Metal Chelating Properties -- 1.5 Adverse Effects of Antioxidants -- References -- 2. Natural Polyphenol and Flavonoid Polymers -- 2.1 Introduction -- 2.2 Structural Classification of Polyphenols -- 2.2.1 Simple Phenolics -- 2.2.2 Stilbenes -- 2.2.3 Lignin -- 2.2.4 Flavonoids -- 2.2.5 Tannins -- 2.3 Polyphenol Biosynthesis and Function in Plants -- 2.3.1 Biosynthesis -- 2.3.2 Protective Roles -- 2.4 Tannins in Human Nutrition -- 2.4.1 Dietary Sources and Intake -- 2.4.2 Absorption and Metabolism -- 2.5 Antioxidant Activity of Tannins -- 2.5.1 Mechanisms -- 2.5.2 Structure-activity Relationships -- 2.6 Protective Effects of Proanthocyanidins in Human Health -- 2.7 Conclusion -- Acknowledgements -- References -- 3. Synthesis and Applications of Polymeric Flavonoids -- 3.1 Introduction -- 3.2 Polycondensates of Catechin with Aldehydes.

3.3 Enzymatically Polymerized Flavonoids -- 3.4 Biopolymer-flavonoid Conjugates -- 3.5 Conclusion -- References -- 4. Antioxidant Polymers: Metal Chelating Agents -- 4.1 Introduction -- 4.1.1 Antioxidants -- 4.1.2 Natural Polymers as Antioxidants -- 4.1.3 Chelating Polymers and Heavy Metal Ions -- 4.2 Chitin and Chitosan -- 4.2.1 Chitin and Chitosan Derivatives -- 4.2.2 Chitin and Chitosan as Chelating Agents -- 4.3 Alginates -- 4.4 Chelation Studies -- 4.4.1 Chitosan Derivatives as Chelating Agents -- 4.4.2 Alginates as Chelating Agents -- 4.5 Conclusions -- References -- 5. Antioxidant Polymers by Chitosan Modification -- 5.1 Introduction -- 5.2 Chitosan Characteristics -- 5.3 Reactive Oxygen Species and Chitosan as Antioxidant -- 5.4 Structure Modifications -- 5.4.1 N-Carboxymethyl Chitosan Derivatives -- 5.4.2 Quaternary Salts -- 5.4.3 Sulphur Derivatives -- 5.4.4 Chitosan Containing Phenolic Compounds -- 5.4.5 Schiff Bases of Chitosan -- 5.5 Conclusion -- References -- 6. Cellulose and Dextran Antioxidant Polymers for Biomedical Applications -- 6.1 Introduction -- 6.2 Antioxidant Polymers Cellulose-based -- 6.2.1 Cellulose -- 6.2.2 Antioxidant Biomaterials Carboxymethylcellulose-based -- 6.2.3 Ferulate Lipoate and Tocopherulate Cellulose -- 6.2.4 Cellulose Hydrogel Containing Trans-ferulic Acid -- 6.2.5 Polymeric Antioxidant Membranes Based on Modified Cellulose and PVDF/cellulose Blends -- 6.2.6 Synthesis of Antioxidant Novel Broom and Cotton Fibers Derivatives -- 6.3 Antioxidant Polymers Dextran-based -- 6.3.1 Dextran -- 6.3.2 Biocompatible Dextran-coated Nanoceria with pH-dependent Antioxidant Properties -- 6.3.3 Coniugates of Dextran with Antioxidant Properties -- 6.3.4 Dextran Hydrogel Linking Trans-ferulic Acid for the Stabilization and Transdermal Delivery of Vitamin E -- References.

7. Antioxidant Polymers by Free Radical Grafting on Natural Polymers -- 7.1 Introduction -- 7.2 Grafting of Antioxidant Molecules on Natural Polymers -- 7.3 Proteins-based Antioxidant Polymers -- 7.4 Polysaccharides-based Antioxidant Polymers -- 7.4.1 Chitosan -- 7.4.2 Starch -- 7.4.3 Inulin and Alginate -- 7.5 Conclusions -- Acknowledgements -- References -- 8. Natural Polymers with Antioxidant Properties: Poly-/oligosaccharides of Marine Origin -- 8.1 Introduction to Polysaccharides from Marine Sources -- 8.1.1 Polysaccharides from Marine Algae -- 8.1.2 Polysaccharides from Marine Invertebrates -- 8.1.3 Marine Bacteria Polysaccharides -- 8.2 Antioxidant Activities of Marine Polysaccharides and their Derivatives -- 8.2.1 Antioxidant Evaluation Methods -- 8.2.2 Marine Sulfated Polysaccharides -- 8.2.3 Marine Uronic Acid-containing Polysaccharides -- 8.2.4 Marine Non-acidic Polysaccharides and their Oligomers -- 8.2.5 Marine Glycoconjugates -- 8.3 Applications of Marine Antioxidant Polysaccharides and their Derivatives -- 8.3.1 Applications in Food Industry -- 8.3.2 Applications as Medicinal Materials -- 8.3.3 Applications as Cosmetic Ingredients -- 8.3.4 Applications in Other Fields -- 8.4 Structure-antioxidant Relationships of Marine Poly- / oligosaccharides -- 8.5 Conclusions -- Acknowledgements -- References -- 9. Antioxidant Peptides from Marine Origin: Sources, Properties and Potential Applications -- 9.1 Introduction -- 9.2 Whole Fish Hydrolysates -- 9.3 Marine Invertebrate Hydrolysates -- 9.4 Fish Frames Hydrolysates -- 9.5 Viscera Hydrolysates -- 9.6 Muscle Hydrolysates -- 9.7 Collagen and Gelatin Hydrolysates -- 9.8 Seaweeds Hydrolysates -- 9.9 Potential Applications -- 9.10 Conclusions -- Acknowledgements -- References -- 10. Synthetic Antioxidant Polymers: Enzyme Mimics -- 10.1 Introduction -- 10.2 Organo-selenium/tellurium Compound Mimics.

10.2.1 Chemistry of Organo-selenium/tellurium -- 10.2.2 Synthetic Organo-selenium/tellurium Compounds as GPX Mimics -- 10.2.3 Cyclodextrin-based Mimics -- 10.3 Metal Complex Mimics -- 10.3.1 The Role of Metal Ions in Complexes -- 10.3.2 Manganese Complexes Mimics -- 10.3.3 Other Metal Complex Mimics -- 10.4 Selenoprotein Mimics -- 10.4.1 Strategies of Selenoprotein Synthesis -- 10.4.2 Synthetic Selenoproteins -- 10.5 Supramolecular Nanoenzyme Mimics -- 10.5.1 Advantages of Supramolecular Nanoenzyme Mimics -- 10.5.2 Supramolecular Nanoenzyme Mimics with Antioxidant Acitivity -- 10.6 Conclusion -- References -- 11. Synthetic Polymers with Antioxidant Properties -- 11.1 Introduction -- 11.2 Intrinsically Conducting Polymers -- 11.3 Intrinsically Conducting Polymers with Antioxidant Properties -- 11.4 Synthesis of Antioxidant Intrinsically Conducting Polymers -- 11.4.1 Chemical Synthesis -- 11.4.2 Electrochemical Synthesis -- 11.4.3 Other Polymerization Techniques -- 11.5 Polymer Morphologies -- 11.5.1 Polyaniline -- 11.5.2 Polypyrrole -- 11.5.3 Poly(3,4-ethylenedioxythiophene) -- 11.6 Mechanism of Radical Scavenging -- 11.7 Assessment of Free Radical Scavenging Capacity -- 11.7.1 DPPH Assay -- 11.7.2 ABTS Assay -- 11.8 Factors Affecting the Radical Scavenging Activity -- 11.9 Polymer Blends and Practical Applications -- References -- 12. Synthesis of Antioxidant Monomers Based on Sterically Hindered Phenols, a-Tocopherols, Phosphites and Hindered Amine Light Stabilizers (HALS) and their Copolymerization with Ethylene, Propylene or Styrene -- 12.1 Introduction -- 12.2 Synthesis of Antioxidant Monomers to Enhance Physical Persistence and Performance of Stabilizers -- 12.2.1 Copolymerization of Antioxidants with α-Olefins Using Coordination Catalysts -- 12.2.2 Synthesis of Antioxidant Monomers.

12.3 Phenolic Antioxidant Monomers and their Copolymerization with Coordination Catalysts -- 12.3.1 Copolymerization of Antioxidant Monomers with Ethylene or Propylene using Traditional Ziegler-Natta Catalysts -- 12.4 Copolymerization of Antioxidant Monomers with Ethylene, Propylene, Styrene and Carbon Monoxide Using Single Site Catalysts -- 12.4.1 Copolymerization of Phenolic Antioxidant Monomers -- 12.4.2 Copolymerization of HALS Monomers using Single Site Catalysts -- 12.5 Conclusions -- Acknowledgements -- References -- 13. Novel Polymeric Antioxidants for Materials -- 13.1 Industrial Antioxidants -- 13.2 Antioxidants Used in Plastics (Polymer) Industry -- 13.2.1 Primary Antioxidants -- 13.2.2 Secondary Antioxidants -- 13.3 Antioxidants Used in Lubricant Industry -- 13.4 Antioxidants Used in Elastomer (Rubber) Industry -- 13.5 Antioxidants Used in Fuel Industry -- 13.6 Antioxidants Used in Food Industry -- 13.6.1 Natural Food Antioxidants -- 13.6.2 Synthetic Food Antioxidants -- 13.7 Limitations of Conventional Antioxidants -- 13.7.1 Performance Issues because of Antioxidant Efficiency Loss -- 13.7.2 Environmental Issues and Safety Concerns -- 13.7.3 Compatibility Issues -- 13.7.4 Poor Thermal Stability -- 13.8 Trends towards High Molecular Weight Antioxidants -- 13.8.1 Functionalization of Conventional Antioxidants with Hydrocarbon Chains -- 13.8.2 Macromolecular Antioxidants -- 13.8.3 Polymer-bound Antioxidants -- 13.8.4 Polymeric Antioxidants -- 13.9 Motivation, Design and Methodology for Synthesis of Novel Polymeric Antioxidant Motivation -- 13.9.1 Design of the Polymeric Antioxidants -- 13.9.2 Methodology -- 13.10 Biocatalytic Synthesis of Polymeric Antioxidants -- 13.11 General Procedure for Enzymatic Polymerization -- 13.11.1 Synthesis and Characterization of Polymeric Antioxidants -- 13.11.2 Antioxidant Activity of Polymeric Antioxidants.

13.11.3 Evaluation of Polymeric Antioxidants in Vegetable Oils by Accelerated Oxidation.
Abstract:
Antioxidant Polymers is an exhaustive overview of the recent developments in the field of polymeric materials showing antioxidant properties. This research area has grown rapidly in the last decade because antioxidant polymers have wide industry applications ranging from materials science to biomedical, pharmaceuticals and cosmetics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: