Cover image for Colloid Science : Principles, Methods and Applications.
Colloid Science : Principles, Methods and Applications.
Title:
Colloid Science : Principles, Methods and Applications.
Author:
Cosgrove, Terence.
ISBN:
9781444320183
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (399 pages)
Contents:
Colloid Science Principles, methods and applications -- Contents -- Preface -- Introduction -- Acknowledgements -- List of Contributors -- 1 An Introduction to Colloids -- 1.1 Introduction -- 1.2 Basic Definitions -- 1.2.1 Concentration -- 1.2.2 Interfacial Area -- 1.2.3 Effective Concentrations -- 1.2.4 Average Separation -- 1.3 Stability -- 1.3.1 Quiescent Systems -- 1.3.2 Sedimentation or Creaming -- 1.3.3 Shearing Flows -- 1.3.4 Other Forms of Instability -- 1.4 Colloid Frontiers -- References -- 2 Charge in Colloidal Systems -- 2.1 Introduction -- 2.2 The Origin of Surface Charge -- 2.2.1 Ionisation of Surface Groups -- 2.2.2 Ion Adsorption -- 2.2.3 Dissolution of Ionic Solids -- 2.2.4 Isomorphous Substitution -- 2.2.5 Potential Determining Ions -- 2.3 The Electrochemical Double Layer -- 2.3.1 The Stern-Gouy-Chapman (SGC) Model of the Double Layer -- 2.3.2 The Double Layer at the Hg/Electrolyte Interface -- 2.3.3 Specific Adsorption -- 2.3.4 Interparticle Forces -- 2.4 Electrokinetic Properties -- 2.4.1 Electrolyte Flow -- 2.4.2 Streaming Potential Measurements -- 2.4.3 Electro-osmosis -- 2.4.4 Electrophoresis -- 2.4.5 Electroacoustic Technique -- References -- 3 Stability of Charge-stabilised Colloids -- 3.1 Introduction -- 3.2 The Colloidal Pair Potential -- 3.2.1 Attractive Forces -- 3.2.2 Electrostatic Repulsion -- 3.2.3 Effect of Particle Concentration -- 3.2.4 Total Potential -- 3.3 Criteria for Stability -- 3.3.1 Salt Concentration -- 3.3.2 Counter-ion Valency -- 3.3.3 Zeta Potential -- 3.3.4 Particle Size -- 3.4 Kinetics of Coagulation -- 3.4.1 Diffusion-limited Rapid Coagulation -- 3.4.2 Interaction-limited Coagulation -- 3.4.3 Experimental Determination of c.c.c. -- 3.5 Conclusions -- References -- 4 Surfactant Aggregation and Adsorption at Interfaces -- 4.1 Introduction -- 4.2 Characteristic Features of Surfactants.

4.3 Classification and Applications of Surfactants -- 4.3.1 Types of Surfactants -- 4.3.2 Surfactant Uses and Development -- 4.4 Adsorption of Surfactants at Interfaces -- 4.4.1 Surface Tension and Surface Activity -- 4.4.2 Surface Excess and Thermodynamics of Adsorption -- 4.4.3 Efficiency and Effectiveness of Surfactant Adsorption -- 4.5 Surfactant Solubility -- 4.5.1 The Krafft Temperature -- 4.5.2 The Cloud Point -- 4.6 Micellisation -- 4.6.1 Thermodynamics of Micellisation -- 4.6.2 Factors Affecting the CMC -- 4.6.3 Structure of Micelles and Molecular Packing -- 4.7 Liquid Crystalline Mesophases -- 4.7.1 Definition -- 4.7.2 Structures -- 4.7.3 Phase Diagrams -- 4.8 Advanced Surfactants -- References -- 5 Microemulsions -- 5.1 Introduction -- 5.2 Microemulsions: Definition and History -- 5.3 Theory of Formation and Stability -- 5.3.1 Interfacial Tension in Microemulsions -- 5.3.2 Kinetic Instability -- 5.4 Physicochemical Properties -- 5.4.1 Predicting Microemulsion Type -- 5.4.2 Surfactant Film Properties -- 5.4.3 Phase Behaviour -- 5.5 Developments and Applications Temperature -- 5.5.1 Microemulsions with Green and Novel Solvents -- 5.5.2 Microemulsions as Reaction Media for Nanoparticles -- References -- 6 Emulsions -- 6.1 Introduction -- 6.1.1 Definitions of Emulsion Type -- 6.1.2 Novel Features of Emulsion Systems, Compared to Solid/Liquid Dispersions -- 6.2 Preparation -- 6.2.1 Comminution - Batch -- 6.2.2 Comminution - Continuous -- 6.2.3 Nucleation and Growth -- 6.3 Stability -- 6.3.1 Introduction -- 6.3.2 Sedimentation and Creaming -- 6.3.3 Aggregation -- 6.3.4 Coalescence -- 6.3.5 Ostwald Ripening -- 6.3.6 Phase Inversion -- References -- 7 Polymers and Polymer Solutions -- 7.1 Introduction -- 7.2 Polymerisation -- 7.2.1 Condensation -- 7.2.2 Free Radical -- 7.2.3 Ionic Methods -- 7.3 Copolymers -- 7.4 Polymer Physical Properties.

7.4.1 Entanglements -- 7.5 Polymer Uses -- 7.6 Theoretical Models of Polymer Structure -- 7.6.1 Radius of Gyration -- 7.6.2 Worm-like Chains -- 7.6.3 Radius of Gyration in Ideal Solution -- 7.6.4 Excluded Volume -- 7.6.5 Scaling Theory: Blobs -- 7.6.6 Polyelectrolytes -- 7.7 Measuring Polymer Molecular Weight -- 7.8 Flory Huggins Theory -- 7.8.1 Polymer Solutions -- 7.8.2 Polymer Melts -- 7.8.3 Copolymers -- References -- 8 Polymers at Interfaces -- 8.1 Introduction -- 8.1.1 Steric Stability -- 8.1.2 The Size and Shape of Polymers in Solution -- 8.1.3 Adsorption of Small Molecules -- 8.2 Adsorption of Polymers -- 8.2.1 Configurational Entropy -- 8.2.2 The Flory Surface Parameter ws -- 8.3 Models and Simulations for Terminally Attached Chains -- 8.3.1 Atomistic Modelling -- 8.3.2 Exact Enumeration: Terminally Attached Chains -- 8.3.3 Approximate Methods: Terminally Attached Chains -- 8.3.4 Scaling Models for Terminally Attached Chains (Brushes) -- 8.3.5 Physically Adsorbed Chains: Scheutjens and Fleer Theory -- 8.3.6 Scaling Theory for Physical Adsorption -- 8.4 Experimental Aspects -- 8.4.1 Volume Fraction Profiles -- 8.4.2 Adsorption Isotherms -- 8.4.3 The Bound Fraction -- 8.4.4 The Layer Thickness -- 8.5 Copolymers -- 8.5.1 Liquid/Liquid Interfaces -- 8.6 Polymer Brushes -- 8.7 Conclusions -- References -- 9 Effect of Polymers on Colloid Stability -- 9.1 Introduction -- 9.1.1 Colloid Stability -- 9.1.2 Limitations of Charge Stabilisation -- 9.1.3 Effect of Polymers on Interactions -- 9.2 Particle Interaction Potential -- 9.2.1 Measuring Surface Forces -- 9.3 Steric Stabilisation -- 9.3.1 Theory -- 9.3.2 Steric Stabiliser Design -- 9.3.3 Marginal Solvents -- 9.4 Depletion Interactions -- 9.5 Bridging Interactions -- 9.6 Conclusion -- References -- 10 Wetting of Surfaces -- 10.1 Introduction -- 10.2 Surfaces and Definitions -- 10.3 Surface Tension.

10.4 Surface Energy -- 10.5 Contact Angles -- 10.6 Wetting -- 10.7 Liquid Spreading and Spreading Coefficients -- 10.8 Cohesion and Adhesion -- 10.9 Two Liquids on a Surface -- 10.10 Detergency -- 10.11 Spreading of a Liquid on a Liquid -- 10.12 Characterisation of a Solid Surface -- 10.13 Polar and Dispersive Components -- 10.14 Polar Materials -- 10.15 Wettability Envelopes -- 10.16 Measurement Methods -- 10.17 Conclusions -- References -- 11 Aerosols -- 11.1 Introduction -- 11.2 Generating and Sampling Aerosols -- 11.2.1 Generating Aerosols -- 11.2.2 Sampling Aerosol -- 11.3 Determining the Particle Concentration and Size -- 11.3.1 Determining the Number Concentration -- 11.3.2 Determining the Mass Concentration -- 11.3.3 Determining Particle Size -- 11.4 Determining Particle Composition -- 11.4.1 Off-line Analysis -- 11.4.2 Real-time Analysis -- 11.5 The Equilibrium State of Aerosols -- 11.5.1 Deliquescence and Efflorescence -- 11.5.2 K€ohler Theory -- 11.5.3 Measurements of Hygroscopic Growth -- 11.5.4 Other Phases -- 11.6 The Kinetics of Aerosol Transformation -- 11.6.1 Steady and Unsteady Mass and Heat Transfer -- 11.6.2 Uptake of Trace Species and Heterogeneous Chemistry -- 11.7 Concluding Remarks -- References -- 12 Practical Rheology -- 12.1 Introduction -- 12.2 Making Measurements -- 12.2.1 Definitions -- 12.2.2 Designing an Experiment -- 12.2.3 Geometries -- 12.2.4 Viscometry -- 12.2.5 Shear Thinning and Thickening Behaviour -- 12.3 Rheometry and Viscoelasticity -- 12.3.1 Viscoelasticity and Deborah Number -- 12.3.2 Oscillation and Linearity -- 12.3.3 Creep Compliance -- 12.3.4 Liquid and Solid Behaviour -- 12.3.5 Sedimentation and Storage Stability -- 12.4 Examples of Soft Materials -- 12.4.1 Simple Particles and Polymers -- 12.4.2 Networks and Functionalisation -- 12.4.3 Polymeric Additives -- 12.4.4 Particle Additives -- 12.5 Summary.

References -- 13 Scattering and Reflection Techniques -- 13.1 Introduction -- 13.2 The Principle of a Scattering Experiment -- 13.3 Radiation for Scattering Experiments -- 13.4 Light Scattering -- 13.5 Dynamic Light Scattering -- 13.6 Small Angle Scattering -- 13.7 Sources of Radiation -- 13.8 Small Angle Scattering Apparatus -- 13.9 Scattering and Absorption by Atoms -- 13.10 Scattering Length Density -- 13.11 Small Angle Scattering from a Dispersion -- 13.12 Form Factor for Spherical Particles -- 13.13 Determining Particle Size from SANS and SAXS -- 13.14 Guinier Plots to Determine Radius of Gyration -- 13.15 Determination of Particle Shape -- 13.16 Polydispersity -- 13.17 Determination of Particle Size Distribution -- 13.18 Alignment of Anisotropic Particles -- 13.19 Concentrated Dispersions -- 13.20 Contrast Variation using SANS -- 13.21 High Q Limit: Porod Law -- 13.22 Introduction to X-ray and Neutron Reflection -- 13.23 Reflection Experiment -- 13.24 A Simple Example of a Reflection Measurement -- 13.25 Conclusion -- References -- 14 Optical Manipulation -- 14.1 Introduction -- 14.2 Manipulating Matter with Light -- 14.3 Force Generation in Optical Tweezers -- 14.4 Nanofabrication -- 14.5 Single Particle Dynamics -- 14.5.1 Measuring Nanometer Displacements -- 14.5.2 Brownian Fluctuations in an Optical Trap -- 14.5.3 Dynamical Complexity in Colloidal Gels -- 14.6 Conclusions -- References -- 15 Electron Microscopy -- 15.1 General Features of (Electron) Optical Imaging Systems -- 15.2 Conventional TEM -- 15.2.1 Background -- 15.2.2 Practical Aspects -- 15.2.3 Polymer Latex Particles -- 15.2.4 Core/Shell Particles -- 15.2.5 Internal Structure -- 15.3 Conventional SEM -- 15.3.1 Background -- 15.3.2 Types of Signal -- 15.3.3 Practical Aspects -- 15.4 Summary -- References -- 16 Surface Forces -- 16.1 Introduction -- 16.1.1 Intermolecular Forces.

16.1.2 From Intermolecular Forces to Surface Forces.
Abstract:
Colloidal systems are important across a range of industries, such as the food, pharmaceutical, agrochemical, cosmetics, polymer, paint and oil industries, and form the basis of a wide range of products (eg cosmetics & toiletries, processed foodstuffs and photographic film). A detailed understanding of their formation, control and application is required in those industries, yet many new graduate or postgraduate chemists or chemical engineers have little or no direct experience of colloids. Based on lectures given at the highly successful Bristol Colloid Centre Spring School, Colloid Science: Principles, Methods and Applications provides a thorough introduction to colloid science for industrial chemists, technologists and engineers. Lectures are collated and presented in a coherent and logical text on practical colloid science.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: