Cover image for Responsive Membranes and Materials.
Responsive Membranes and Materials.
Title:
Responsive Membranes and Materials.
Author:
Bhattacharyya, D.
ISBN:
9781118389546
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (466 pages)
Contents:
Responsive Membranes and Materials -- Contents -- Preface -- List of Contributors -- 1 Oligonucleic Acids ("Aptamers") for Designing Stimuli-Responsive Membranes -- 1.1 Introduction -- 1.2 Aptamers - Structure, Function, Incorporation, and Selection -- 1.3 Characterization Techniques for Aptamer-Target Interactions -- 1.3.1 Measuring Overall Structural Changes of Aptamers Using QCM-D -- 1.3.2 Measuring Overall Structural Changes of Aptamers Using DPI -- 1.4 Aptamers - Applications -- 1.4.1 Electromechanical Gates -- 1.4.2 Stimuli-Responsive Nucleic Acid Gates in Nanoparticles -- 1.4.3 Stimuli-Responsive Aptamer Gates in Nanoparticles -- 1.4.4 Stimuli-Responsive Aptamer-Based Gating Membranes -- 1.5 Outlook -- Acknowledgements -- References -- 2 Emerging Membrane Nanomaterials - Towards Natural Selection of Functions -- 2.1 Introduction -- 2.2 Ion-Pair Conduction Pathways in Liquid and Hybrid Membranes -- 2.3 Dynamic Insidepore Resolution Towards Emergent Membrane Functions -- 2.4 Dynameric Membranes and Materials -- 2.4.1 Constitutional Hybrid Materials -- 2.4.2 Dynameric Membranes Displaying Tunable Properties on Constitutional Exchange -- 2.5 Conclusion -- Acknowledgements -- References -- 3 Carbon Nanotube Membranes as an Idealized Platform for Protein Channel Mimetic Pumps -- 3.1 Introduction -- 3.2 Experimental Understanding of Mass Transport Through CNTs -- 3.2.1 Ionic Diffusion and Gatekeeper Activity -- 3.2.2 Gas and Fluid Flow -- 3.3 Electrostatic Gatekeeping and Electro-osmotic Pumping -- 3.3.1 Biological Gating -- 3.4 CNT Membrane Applications -- 3.5 Conclusion and Future Prospects -- Acknowledgements -- References -- 4 Synthesis Aspects in the Design of Responsive Membranes -- 4.1 Introduction -- 4.2 Responsive Mechanisms -- 4.3 Responsive Polymers -- 4.3.1 Temperature-Responsive Polymers.

4.3.2 Polymers that Respond to pH, Ionic Strength, Light -- 4.4 Preparation of Responsive Membranes -- 4.5 Polymer Processing into Membranes -- 4.5.1 Solvent Casting -- 4.5.2 Phase Inversion -- 4.6 In Situ Polymerization -- 4.6.1 Radiation-Based Methods -- 4.6.2 Interpenetrating Polymer Networks (IPNs) -- 4.7 Surface Modification Using Stimuli-Responsive Polymers -- 4.8 "Grafting to" Methods -- 4.8.1 Physical Adsorption - Non-covalent -- 4.8.2 Chemical Grafting - Covalent -- 4.8.3 Surface Entrapment - Non-covalent, Physically Entangled -- 4.9 "Grafting from" - a.k.a. Surface-Initiated Polymerization -- 4.9.1 Photo-Initiated Polymerization -- 4.9.2 Atom Transfer Radical Polymerization -- 4.9.3 Reversible Addition-Fragmentation Chain Transfer Polymerization -- 4.9.4 Other Grafting Methods -- 4.9.5 Summary of "Grafting from" Methods -- 4.10 Future Directions -- References -- 5 Tunable Separations, Reactions, and Nanoparticle Synthesis in Functionalized Membranes -- 5.1 Introduction -- 5.2 Membrane Functionalization -- 5.2.1 Chemical Modification -- 5.2.2 Surface Initiated Membrane Modification -- 5.2.3 Cross-Linked Hydrogel (Pore Filled) Membranes -- 5.2.4 Layer by Layer Assemblies -- 5.3 Applications -- 5.3.1 Water Flux Tunability -- 5.3.2 Tunable Separation of Salts -- 5.3.3 Charged-Polymer Multilayer Assemblies for Environmental Applications -- 5.4 Responsive Membranes and Materials for Catalysis and Reactions -- 5.4.1 Iron-Functionalized Responsive Membranes -- 5.4.2 Responsive Membranes for Enzymatic Catalysis -- Acknowledgements -- References -- 6 Responsive Membranes for Water Treatment -- 6.1 Introduction -- 6.2 Fabrication of Responsive Membranes -- 6.2.1 Functionalization by Incubation in Liquids -- 6.2.2 Functionalization by Incorporation of Responsive Groups in the Base Membrane -- 6.2.3 Surface Modification of Existing Membranes.

6.3 Outlook -- References -- 7 Functionalization of Polymeric Membranes and Feed Spacers for Fouling Control in Drinking Water Treatment Applications -- 7.1 Membrane Filtration -- 7.2 Fouling -- 7.3 Improving Membrane Performance -- 7.3.1 Plasma Treatment -- 7.3.2 Ultraviolet (UV) Irradiation -- 7.3.3 Membrane Modification by Graft Polymerization -- 7.3.4 Ion Beam Irradiation -- 7.4 Design and Surface Modifications of Feed Spacers for Biofouling Control -- 7.5 Conclusion -- Acknowledgements -- References -- 8 Pore-Filled Membranes as Responsive Release Devices -- 8.1 Introduction -- 8.2 Responsive Pore-Filled Membranes -- 8.3 Development and Characterization of PVDF-PAA Pore-Filled pH-Sensitive Membranes -- 8.3.1 Membrane Gel Incorporation (Mass Gain) -- 8.3.2 Membrane pH Reversibility -- 8.3.3 Membrane Water Flux as pH Varied from 2 to 7.5 -- 8.3.4 Effects of Gel Incorporation on Membrane Pure Water Permeabilities at pH Neutral and Acidic -- 8.3.5 Estimation and Calculation of Pore Size -- 8.4 pH-Sensitive Poly(Vinylidene Fluoride)-Poly(Acrylic Acid) Pore-Filled Membranes for Controlled Drug Release in Ruminant Animals -- 8.4.1 Determination of Membrane Diffusion Permeability (PS) for Salicylic Acid -- 8.4.2 Applicability of the Fabricated Pore-Filled Membranes on the Salicylic Acid Release and Retention -- References -- 9 Magnetic Nanocomposites for Remote Controlled Responsive Therapy and in Vivo Tracking -- 9.1 Introduction -- 9.1.1 Nanocomposite Polymers -- 9.1.2 Magnetic Nanoparticles -- 9.2 Applications of Magnetic Nanocomposite Polymers -- 9.2.1 Thermal Actuation -- 9.2.2 Thermal Therapy -- 9.2.3 Mechanical Actuation -- 9.2.4 In Vivo Tracking and Applications -- 9.3 Concluding Remarks -- References -- 10 The Interactions between Salt Ions and Thermo-Responsive Poly (N-Isopropylacrylamide) from Molecular Dynamics Simulations.

10.1 Introduction -- 10.2 Computational Details -- 10.3 Results and Discussion -- 10.4 Conclusion -- Acknowledgements -- References -- 11 Biologically-Inspired Responsive Materials: Integrating Biological Function into Synthetic Materials -- 11.1 Introduction -- 11.2 Biomimetics in Biotechnology -- 11.3 Hinge-Motion Binding Proteins -- 11.4 Calmodulin -- 11.5 Biologically-Inspired Responsive Membranes -- 11.6 Stimuli-Responsive Hydrogels -- 11.7 Micro/Nanofabrication of Hydrogels -- 11.8 Mechanical Characterization of Hydrogels -- 11.9 Creep Properties of Hydrogels -- 11.10 Conclusion and Future Perspectives -- Acknowledgements -- References -- 12 Responsive Colloids with Controlled Topology -- 12.1 Introduction -- 12.2 Inert Core/Responsive Shell Particles -- 12.3 Responsive Core/Responsive Shell Particles -- 12.4 Hollow Particles -- 12.5 Janus Particles -- 12.6 Summary -- References -- 13 Novel Biomimetic Polymer Gels Exhibiting Self-Oscillation -- 13.1 Introduction -- 13.2 The Design Concept of Self-Oscillating Gel -- 13.3 Aspects of the Autonomous Swelling-Deswelling Oscillation -- 13.4 Design of Biomimetic Actuator Using Self-Oscillating Polymer and Gel -- 13.4.1 Ciliary Motion Actuator (Artificial Cilia) -- 13.4.2 Self-Walking Gel -- 13.4.3 Theoretical Simulation of the Self-Oscillating Gel -- 13.5 Mass Transport Surface Utilizing Peristaltic Motion of Gel -- 13.6 Self-Oscillating Polymer Chains and Microgels as "Nanooscillators" -- 13.6.1 Solubility Oscillation of Polymer Chains -- 13.6.2 Self-Flocculating/Dispersing Oscillation of Microgels -- 13.6.3 Viscosity Oscillation of Polymer Solution and Microgel Dispersion -- 13.6.4 Attempts of Self-Oscillation under Acid- and Oxidant-Free Physiological Conditions -- 13.7 Conclusion -- References -- 14 Electroactive Polymer Soft Material Based on Dielectric Elastomer.

14.1 Introduction to Electroactive Polymers -- 14.1.1 Development History -- 14.1.2 Classification -- 14.1.3 Electronic Electroactive Polymers -- 14.1.4 Ionic Electroactive Polymers -- 14.1.5 Electroactive Polymer Applications -- 14.1.6 Application of Dielectric Elastomers -- 14.1.7 Manufacturing the Main Structure of Actuators Using EAP Materials -- 14.1.8 The Current Problem for EAP Materials and their Prospects -- 14.2 Materials of Dielectric Elastomers -- 14.2.1 The Working Principle of Dielectric Elastomers -- 14.2.2 Material Modification of Dielectric Elastomer -- 14.2.3 Dielectric Elastomer Composite -- 14.3 The Theory of Dielectric Elastomers -- 14.3.1 Free Energy of Dielectric Elastomer Electromechanical Coupling System -- 14.3.2 Special Elastic Energy -- 14.3.3 Special Electric Field Energy -- 14.3.4 Incompressible Dielectric Elastomer -- 14.3.5 Model of Several Dielectric Elastomers -- 14.4 Failure Model of a Dielectric Elastomer -- 14.4.1 Electrical Breakdown -- 14.4.2 Electromechanical Instability and Snap-Through Instability -- 14.4.3 Loss of Tension -- 14.4.4 Rupture by Stretching -- 14.4.5 Zero Electric Field Condition -- 14.4.6 Super-Electrostriction Deformation of a Dielectric Elastomer -- 14.5 Converter Theory of Dielectric Elastomer -- 14.5.1 Principle for Conversion Cycle -- 14.5.2 Plane Actuator -- 14.5.3 Spring-Roll Dielectric Elastomer Actuator -- 14.5.4 Tube-Type Actuator -- 14.5.5 Film-Spring System -- 14.5.6 Energy Harvester -- 14.5.7 The Non-Linear Vibration of a Dielectric Elastomer Ball -- 14.5.8 Folded Actuator -- References -- 15 Responsive Membranes/Material-Based Separations: Research and Development Needs -- 15.1 Introduction -- 15.2 Water Treatment -- 15.3 Biological Applications -- 15.4 Gas Separation and Additional Applications -- References -- Index -- Supplemental Images.
Abstract:
The development of new multifunctional membranes and materials which respond to external stimuli, such as pH, temperature, light, biochemicals or magnetic or electrical signals, represents new approaches to separations, reactions, or recognitions. With multiple cooperative functions, responsive membranes and materials have applications which range from biopharmaceutical, to drug delivery systems to water treatment. This book covers recent advances in the generation and application of responsive materials and includes: Development and design of responsive membranes and materials Carbon nanotube membranes Tunable separations, reactions and nanoparticle synthesis Responsive membranes for water treatment Pore-filled membranes for drug release Biologically-inspired responsive materials and hydrogels Biomimetic polymer gels Responsive Membranes and Materials provides a cutting-edge resource for researchers and scientists in membrane science and technology, as well as specialists in separations, biomaterials, bionanotechnology, drug delivery, polymers, and functional materials.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: