Cover image for Energy Localisation and Transfer.
Energy Localisation and Transfer.
Title:
Energy Localisation and Transfer.
Author:
Dauxois, Thierry.
ISBN:
9789812794864
Personal Author:
Physical Description:
1 online resource (428 pages)
Series:
Advanced Series in Nonlinear Dynamics ; v.22

Advanced Series in Nonlinear Dynamics
Contents:
CONTENTS -- Preface -- CHAPTER 1 COMPUTATIONAL STUDIES OF DISCRETE BREATHERS -- 1 Introduction -- 2 A bit on numerics of solving ODEs -- 3 Observing and analyzing breathers in numerical runs -- 3.1 Targeted initial conditions -- 3.2 Breathers in transient processes -- 3.3 Breathers in thermal equilibrium -- 4 Obtaining breathers up to machine precision: Part I -- 4.1 Method No.1 - designing a map -- 4.2 Method No.2 - saddles on the rim with space-time separation -- 4.3 Method No.3 - homoclinic orbits with time-space separation -- 5 Obtaining breathers up to machine precision: Part II -- 5.1 Method No.4 - Newton in phase space -- 5.2 Method No.5 - steepest descent in phase space -- 5.3 Symmetries -- 6 Perturbing breathers -- 6.1 Linear stability analysis -- 6.2 Plane wave scattering -- 7 Breathers in dissipative systems -- 7.1 Obtaining dissipative breathers -- 7.2 Perturbing dissipative breathers -- 8 Computing quantum breathers -- 8.1 The dimer -- 8.2 The trimer -- 8.3 Quantum roto-breathers -- 9 Some applications instead of conclusions -- Acknowledgments -- References -- CHAPTER 2 VIBRATIONAL SPECTROSCOPY AND QUANTUM LOCALIZATION -- 1 Introduction -- 1.1 Nonlinear dynamics and energy localization -- 1.2 Nonlinear dynamics and vibrational spectroscopy -- 2 Vibrational spectroscopy techniques -- 2.1 Some definitions -- 2.2 Optical techniques -- 2.3 Neutron scattering techniques -- 2.4 A (not so) simple example -- 3 Molecular vibrations -- 3.1 The harmonic approximation: Normal modes -- 3.2 Anharmonicity -- 3.3 Local modes -- 3.4 Local versus normal mode separability -- 3.5 The water molecule -- 3.6 The algebraic force-field Hamiltonian -- 3.7 Other molecules -- 3.8 Local modes and energy localization -- 4 Crystals -- 4.1 The harmonic approximation: Phonons -- 4.2 Phonon-phonon interaction.

4.3 Phonon-electron interaction -- 4.4 Local modes -- 4.5 Nonlinear dynamics -- 5 Conclusion -- 5.1 Vibrational spectroscopy and nonlinear dynamics -- 5.2 Optical vibrational spectroscopy and energy localization -- 5.3 Inelastic neutron scattering spectroscopy of solitons -- 5.4 Vibrational spectroscopy and dynamical models -- References -- CHAPTER 3 SLOW MANIFOLDS -- 1 Introduction -- 2 Normally Hyperbolic versus General Case -- 3 Hamiltonian versus General Case -- 4 Improving a slow manifold -- 5 Symplectic slow manifolds -- 6 The Methods of Collective Coordinates -- 7 Velocity Splitting -- 8 Poisson slow manifolds -- 9 Slow manifolds with Internal Oscillation -- 10 Internal oscillation: U(1)-symmetric Hamiltonians -- 11 Internal oscillation: General Hamiltonians -- 12 Bounds on time evolution -- 13 Weak Damping -- Acknowledgements -- References -- CHAPTER 4 LOCALIZED EXCITATIONS IN JOSEPHSON ARRAYS. PART I: THEORY AND MODELING -- 1 Introduction -- 2 The single Josephson junction -- 2.1 Josephson effect -- 2.2 Superconducting tunnel junctions -- 2.3 Long Josephson junctions -- 2.4 Quantum effects in Josephson junctions -- 3 Modeling Josephson arrays -- 3.1 Series arrays -- 3.2 rf-SQUID -- 3.3 dc-SQUID -- 3.4 JJ parallel array -- 3.5 JJ ladder array -- 3.6 2D arrays -- 4 Localized excitations in Josephson arrays: Vortices and kinks -- 4.1 Vortices in 2D arrays -- 4.2 2D arrays with small junctions -- 4.3 Kinks in parallel arrays -- 4.4 Charge solitons in ID arrays -- 5 Discrete breathers in Josephson arrays -- 5.1 Oscillobreather in an ac biased parallel array -- 5.2 Rotobreathers in Josephson arrays -- 5.3 The ladder array -- 5.4 Rotobreathers in a dc biased ladder -- 5.5 Single-plaquette arrays -- 5.6 DBs in two-dimensional Josephson junction arrays -- Acknowledgments -- References.

CHAPTER 5 LOCALIZED EXCITATIONS IN JOSEPHSON ARRAYS. PART II: EXPERIMENTS -- 1 Introduction -- 2 Fabrication of Josephson arrays -- 2.1 Materials -- 2.2 Layout -- 2.3 Junction parameters -- 3 Measurement techniques -- 3.1 Generation of localized excitations -- 3.2 Hot probe imaging techniques -- 4 Experiments in the classical regime -- 4.1 Fluxons in Josephson arrays -- 4.2 Rotobreathers in Josephson ladders -- 4.3 Meandered states in 2-D Josephson arrays -- 5 Experiments in the quantum regime -- 5.1 Single Josephson junction -- 5.2 Coupled Josephson junctions -- 6 Conclusions and outlook -- Acknowledgments -- References -- CHAPTER 6 PROTEIN FUNCTIONAL DYNAMICS: COMPUTATIONAL APPROACHES -- 1 Introduction -- 2 Protein structure -- 3 Energetics of protein stabilisation -- 4 Protein folding -- 4.1 On-lattice models -- 4.2 Off-lattice models -- 4.3 More detailed models -- 5 Protein conformational changes -- 5.1 Functional motions -- 5.2 Collective motions -- 5.3 Low-frequency normal modes -- 6 Dissipation of energy in proteins -- 7 Conclusion -- Acknowledgments -- References -- CHAPTER 7 NONLINEAR VIBRATIONAL SPECTROSCOPY: A METHOD TO STUDY VIBRATIONAL SELF-TRAPPING -- 1 Introduction: The Story of Davidov's Soliton -- 2 Nonlinear Spectroscopy of Vibrational Modes -- 2.1 Harmonic and Anharmonic Potential Energy Surfaces -- 2.2 Linear and Nonlinear Spectroscopy -- 3 Proteins and Vibrational Excitons -- 3.1 Theoretical Background -- 3.2 Experimental Observation -- 4 Hydrogen Bonds and Anharmonicity -- 4.1 Theoretical Background -- 4.2 Experimental Observation -- 5 Vibrational Self-Trapping -- 5.1 Theoretical Background -- 5.2 Experimental Observation -- 6 Conclusion and Outlook -- Acknowledgments -- Appendix: Feynman Diagram Description of Linear and Nonlinear Spectroscopy -- References.

CHAPTER 8 BREATHERS IN BIOMOLECULES ? -- 1 Introduction -- 2 Classical vibrations -- 2.1 Local modes in small molecules -- 2.2 Local modes in large molecules -- 2.3 Local modes in crystals -- 2.4 Localisation of vibrations and chemical reaction rates -- 2.5 Fluctuational opening in DNA -- 3 Quantum self-trapping -- 4 Discussion -- Acknowledgments -- References -- CHAPTER 9 STATISTICAL PHYSICS OF LOCALIZED VIBRATIONS -- 1 Introduction/Outlook -- 2 Thermal DNA denaturation: A domain-wall driven transition? -- 3 ILMs in DNA dynamics? -- 4 Helix formation and melting in polypeptides -- 4.1 Definitions Notation -- 4.2 Thermodynamics -- Acknowledgments -- References -- CHAPTER 10 LOCALIZATION AND TARGETED TRANSFER OF ATOMIC-SCALE NONLINEAR EXCITATIONS: PERSPECTIVES FOR APPLICATIONS -- 1 Introduction -- 2 Discrete Breathers -- 2.1 DBs in periodic lattices -- 2.2 DBs in random systems -- 3 Targeted energy transfer -- 3.1 Nonlinear resonance -- 3.2 Targeted energy transfer in a nonlinear dimer -- 3.3 Targeted energy transfer through discrete breathers -- 4 Ultrafast Electron Transfer -- 4.1 Nonlinear dynamical model for ET -- 4.2 ET in the Dimer -- 4.3 Catalytic ET in a trimer -- 4.4 The example of bacterial photosynthetic reaction center -- 5 Conclusions and perspectives -- Acknowledgments -- References -- Index.
Abstract:
This book provides an introduction to localised excitations in spatially discrete systems, from the experimental, numerical and mathematical points of view. Also known as discrete breathers, nonlinear lattice excitations and intrinsic localised modes, these are spatially localised time periodic motions in networks of dynamical units. Examples of such networks are molecular crystals, biomolecules, and arrays of Josephson superconducting junctions. The book also addresses the formation of discrete breathers and their potential role in energy transfer in such systems. Contents: Computational Studies of Discrete Breathers; Vibrational Spectroscopy and Quantum Localization; Slow Manifolds; Localized Excitations in Josephson Arrays; Protein Functional Dynamics: Computational Approaches; Nonlinear Vibrational Spectroscopy: A Method to Study Vibrational Self-Trapping; Breathers in Biomolecules?; Statistical Physics of Localized Vibrations; Localization and Targeted Transfer of Atomic-Scale Nonlinear Excitations: Perspectives for Applications. Readership: Advanced graduate students and postdoctoral researchers in nonlinear dynamics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: