Cover image for Knowledge Mining Using Intelligent Agents.
Knowledge Mining Using Intelligent Agents.
Title:
Knowledge Mining Using Intelligent Agents.
Author:
Dehuri, Satchidananda.
ISBN:
9781848163874
Personal Author:
Physical Description:
1 online resource (400 pages)
Series:
Advances in Computer Science and Engineering: Texts
Contents:
CONTENTS -- PREFACE -- Chapter 1THEORETICAL FOUNDATIONS OF KNOWLEDGE MINING AND INTELLIGENT AGENT -- 1.1. Knowledge and Agent -- 1.2. Knowledge Mining from Databases -- 1.2.1. KMD tasks -- 1.2.1.1. Mining Association Rules -- 1.2.1.2. Classification -- 1.2.1.3. Clustering -- 1.2.1.4. Dependency Modeling -- 1.2.1.5. Change and Deviation Detection -- 1.2.1.6. Regression -- 1.2.1.7. Summarization -- 1.2.1.8. Causation Modeling -- 1.3. Intelligent Agents -- 1.3.1. Evolutionary computing -- 1.3.2. Swarm intelligence -- 1.3.2.1. Particle Swarm Optimization -- 1.3.2.2. Ant Colony Optimization (ACO) -- 1.3.2.3. Artificial Bee Colony (ABC) -- 1.3.2.4. Artificial Wasp Colony (AWC) -- 1.3.2.5. Artificial Termite Colony (ATC) -- 1.4. Summary -- References -- Chapter 2 THE USE OF EVOLUTIONARY COMPUTATION IN KNOWLEDGE DISCOVERY: THE EXAMPLE OF INTRUSION DETECTION SYSTEMS -- 2.1. Introduction -- 2.2. Background -- 2.2.1. Knowledge discovery and data mining -- 2.2.2. Evolutionary computation -- 2.2.3. Intrusion detection systems -- 2.3. The Role of Evolutionary Computation in KDD -- 2.3.1. Feature selection -- 2.3.2. Classification -- 2.3.2.1. Representation -- 2.3.2.2. Learning approaches -- 2.3.2.3. Rule discovery -- 2.3.3. Regression -- 2.3.4. Clustering -- 2.3.5. Comparison between classification and regression -- 2.4. Evolutionary Operators and Niching -- 2.4.1. Evolutionary operators -- 2.4.2. Niching -- 2.5. Fitness Function -- 2.6. Conclusions and Future Directions -- Acknowledgment -- References -- Chapter 3 EVOLUTION OF NEURAL NETWORK AND POLYNOMIAL NETWORK -- 3.1. Introduction -- 3.2. Evolving Neural Network -- 3.2.1. The evolution of connection weights -- 3.2.2. The evolution of architecture -- 3.2.3. The evolution of node transfer function -- 3.2.4. Evolution of learning rules -- 3.2.5. Evolution of algorithmic parameters.

3.3. Evolving Neural Network using Swarm Intelligence -- 3.3.1. Particle swarm optimization -- 3.3.2. Swarm intelligence for evolution of neural network architecture -- 3.3.2.1. Particle representation -- 3.3.2.2. Fitness evaluation -- 3.3.3. Simulation and results -- 3.4. Evolving Polynomial Network (EPN) using Swarm Intelligence -- 3.4.1. GMDH-type polynomial neural network model -- 3.4.2. Evolving polynomial network (EPN) using PSO -- 3.4.3. Parameters of evolving polynomial network (EPN) -- 3.4.3.1. Highest degree of the polynomials -- 3.4.3.2. Number of terms in the polynomials -- 3.4.3.3. Maximum unique features in each term of the polynomials -- 3.4.4. Experimental studies for EPN -- 3.5. Summary and Conclusions -- References -- Chapter 4 DESIGN OF ALLOY STEELS USING MULTI-OBJECTIVE OPTIMIZATION -- 4.1. Introduction -- 4.2. The Alloy Optimal Design Problem -- 4.3. Neurofuzzy Modeling for Mechanical Property Prediction -- 4.3.1. General scheme of neurofuzzy models -- 4.3.2. Incorporating knowledge into neurofuzzy models -- 4.3.3. Property prediction of alloy steels using neurofuzzy models -- 4.3.3.1. Tensile strength prediction for heat-treated alloy steels -- 4.3.3.2. Impact toughness prediction for heat-treated alloy steels -- 4.4. Introduction to Multi-Objective Optimization -- 4.5. Particle Swarm Algorithm for Multi-Objective Optimization -- 4.5.1. Particle swarm optimization algorithm -- 4.5.2. Adaptive evolutionary particle swarm optimization (AEPSO) algorithm -- 4.5.3. Comparing AEPSO with some leading multi-objective optimization algorithms -- 4.6. Multi-Objective Optimal Alloy Design Using AEPSO -- 4.6.1. Impact toughness oriented optimal design -- 4.6.2. Optimal alloy design with both tensile strength and impact toughness -- 4.7. Conclusions -- Acknowledgments -- References.

Chapter 5 AN EXTENDED BAYESIAN/HAPSO INTELLIGENT METHOD IN INTRUSION DETECTION SYSTEM -- 5.1. Introduction -- 5.2. Related Research -- 5.3. Preliminaries -- 5.3.1. Naive Bayesian classifier -- 5.3.2. Intrusion detection system -- 5.3.2.1. Architecture of IDS -- 5.3.2.2. Efficiency of IDS -- 5.3.2.3. Effectiveness -- 5.3.2.4. Performance of IDS -- 5.3.3. Feature selection -- 5.3.4. Particle swarm optimization -- 5.4. HAPSO for Learnable Bayesian Classifier in IDS -- 5.4.1. Adaptive PSO -- 5.4.2. Hybrid APSO -- 5.4.3. Learnable Bayesian classifier in IDS -- 5.5. Experiments -- 5.5.1. Description of intrusion data -- 5.5.1.1. Probing -- 5.5.1.2. Denial of service attacks -- 5.5.1.3. User to root attacks -- 5.5.1.4. Remote to user attacks -- 5.5.2. System parameters -- 5.5.3. Results -- 5.6. Conclusions and Future Research Directions -- References -- Chapter 6 MINING KNOWLEDGE FROM NETWORK INTRUSION DATA USING DATA MINING TECHNIQUES -- 6.1. Introduction -- 6.2. Mining Knowledge Using Data Mining Techniques -- 6.3. Association Rule Mining -- 6.4. Measuring Interestingness -- 6.5. Classification -- 6.6. Ensemble of Classifier -- 6.7. Clustering -- Types of Clustering Algorithms: -- Algorithm description: -- EM (Expectation Maximization) Clustering -- 6.8. Conclusion -- References -- Chapter 7 PARTICLE SWARM OPTIMIZATION FOR MULTI-OBJECTIVE OPTIMAL OPERATIONAL PLANNING OF ENERGY PLANTS -- 7.1. Introduction -- 7.2. Problem Formulation -- 7.2.1. State variables -- 7.2.2. Objective function -- 7.2.3. Constraints -- 7.3. Particle Swarm Optimization -- 7.3.1. Original PSO -- 7.3.2. Evolutionary PSO EPSO -- 7.3.3. Adaptive PSO(APSO) -- 7.3.4. Simple expansion of PSO for optimal operational planning -- 7.4. Optimal Operational Planning for Energy Plants Using PSO -- 7.5. Numerical Examples -- 7.5.1. Simulation conditions -- 7.5.2. Simulation results.

7.6. FeTOP - Energy Management System -- 7.7. Conclusions -- References -- Chapter 8 SOFT COMPUTING FOR FEATURE SELECTION -- 8.1. Introduction -- 8.1.1. Definition -- 8.2. Non-Soft Computing Techniques for Feature Selection -- 8.2.1. Enumerative algorithms -- 8.2.2. Sequential search algorithms -- 8.2.3. Sampling -- 8.2.4. Feature selection based on information theory -- 8.2.5. Floating search for feature selection -- 8.2.6. Feature selection for SVM -- Working Principle: -- 8.2.7. Feature weighting method -- 8.2.8. Feature selection with dynamic mutual information -- 8.2.9. Learning to classify by ongoing feature selection -- 8.2.10. Multiclass MTS for simultaneous feature selection and classification -- 8.3. Soft computing for feature selection -- 8.3.1. Genetic algorithm for feature selection -- 8.3.2. ELSA -- 8.3.3. Neural network for feature selection -- 8.4. Hybrid Algorithm for Feature Selection -- 8.4.1. Neuro-Fuzzy feature selection -- 8.5. Multi-Objective Genetic Algorithm for Feature Selection -- 8.6. Parallel Genetic Algorithm for Feature Selection -- Self-adaptive genetic algorithm for clustering (SAGA). -- Gene bank process -- 8.7. Unsupervised Techniques for Feature Selection -- 8.8. Evaluation functions -- 8.9. Summary and Conclusions -- References -- Chapter 9 OPTIMIZED POLYNOMIAL FUZZY SWARM NET FOR CLASSIFICATION -- 9.1. Introduction -- 9.2. Fuzzy Net Architecture -- 9.3. Particle Swarm Optimization -- 9.3.1. Fully informed particle swarm (FIPS) -- 9.3.2. Binary particle swarms -- 9.3.3. Hybrids and adaptive particle swarms -- 9.3.4. PSOs with diversity control -- 9.3.5. Bare-bones PSO -- 9.4. Fuzzy Swarm Net Classifier -- Pseudocode -- 9.5. Polynomial Neural Network -- 9.6. Classification with Optimized Polynomial Neural Fuzzy Swarm Net -- Pseudocode -- 9.7. Experimental Studies -- 9.7.1. Description of the datasets.

9.8. Conclusion -- References -- Chapter 10 SOFTWARE TESTING USING GENETIC ALGORITHMS -- 10.1. Introduction -- 10.2. Overview of Test Case Design -- 10.2.1. Path wise test data generators -- 10.3. Genetic Algorithm -- 10.3.1. Introduction to genetic algorithms -- 10.3.2. Overview of genetic algorithms -- 10.4. Path Wise Test Data Generation Based on GA -- 10.5. Summary -- References.
Abstract:
"Knowledge Mining Using Intelligent Agents" explores the concept of knowledge discovery processes and enhances decision-making capability through the use of intelligent agents like ants, termites and honey bees. In order to provide readers with an integrated set of concepts and techniques for understanding knowledge discovery and its practical utility, this book blends two distinct disciplines - data mining and knowledge discovery process, and intelligent agents-based computing (swarm intelligence and computational intelligence). For the more advanced reader, researchers, and decision/policy-makers are given an insight into emerging technologies and their possible hybridization, which can be used for activities like dredging, capturing, distributions and the utilization of knowledge in their domain of interest (i.e. business, policy-making, etc.). By studying the behavior of swarm intelligence, this book aims to integrate the computational intelligence paradigm and intelligent distributed agents architecture to optimize various engineering problems and efficiently represent knowledge from the large gamut of data.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: