Cover image for Solid State Proton Conductors : Properties and Applications in Fuel Cells.
Solid State Proton Conductors : Properties and Applications in Fuel Cells.
Title:
Solid State Proton Conductors : Properties and Applications in Fuel Cells.
Author:
Knauth, Philippe.
ISBN:
9781119962496
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (428 pages)
Contents:
Solid State Proton Conductors: Properties and Applications in Fuel Cells -- Contents -- Preface -- About the Editors -- Contributing Authors -- 1 Introduction and Overview: Protons, the Nonconformist Ions -- 1.1 Brief History of the Field -- 1.2 Structure of This Book -- References -- 2 Morphology and Structure of Solid Acids -- 2.1 Introduction -- 2.1.1 Preparation Technique of Solid Acids -- 2.1.2 Imaging Technique with the Scanning Electron Microscope -- 2.2 Crystal Morphology and Structure of Solid Acids -- 2.2.1 Hydrohalic Acids -- 2.2.2 Main Group Element Oxoacids -- 2.2.3 Transition Metal Oxoacids -- 2.2.4 Carboxylic Acids -- References -- 3 Diffusion in Solid Proton Conductors: Theoretical Aspects and Nuclear Magnetic Resonance Analysis -- 3.1 Fundamentals of Diffusion -- 3.1.1 Phenomenology of Diffusion -- 3.1.2 Solutions of the Diffusion Equation -- 3.1.3 Diffusion Coefficients and Proton Conduction -- 3.1.4 Measurement of the Diffusion Coefficient -- 3.2 Basic Principles of NMR -- 3.2.1 Description of the Main NMR Techniques Used in Measuring Diffusion Coefficients -- 3.3 Application of NMR Techniques -- 3.3.1 Polymeric Proton Conductors -- 3.3.2 Inorganic Proton Conductors -- 3.4 Liquid Water Visualization in Proton-Conducting Membranes by Nuclear Magnetic Resonance Imaging -- 3.5 Conclusions -- References -- 4 Structure and Diffusivity in Proton-Conducting Membranes Studied by Quasielastic Neutron Scattering -- 4.1 Survey -- 4.2 Diffusion in Solids and Liquids -- 4.3 Quasielastic Neutron Scattering: A Brief Introduction -- 4.4 Proton Diffusion in Membranes -- 4.4.1 Microstructure by Means of SAXS and SANS -- 4.4.2 Proton Conductivity and Water Diffusion -- 4.4.3 QENS Studies -- 4.5 Solid State Proton Conductors -- 4.5.1 Aliovalently Doped Perovskites -- 4.5.2 Hydrogen-Bonded Systems -- 4.6 Concluding Remarks -- References.

5 Broadband Dielectric Spectroscopy: A Powerful Tool for the Determination of Charge Transfer Mechanisms in Ion Conductors -- 5.1 Basic Principles -- 5.1.1 The Interaction of Matter with Electromagnetic Fields: The Maxwell Equations -- 5.1.2 Electric Response in Terms of ε*m(ω), σ*m(ω), and Z*m(ω) -- 5.2 Phenomenological Background of Electric Properties in a Time-Dependent Field -- 5.2.1 Polarization Events -- 5.3 Theory of Dielectric Relaxation -- 5.3.1 Dielectric Relaxation Modes of Macromolecular Systems -- 5.3.2 A General Equation for the Analysis in the Frequency Domain of σ*(ω) and ε*(ω) -- 5.4 Analysis of Electric Spectra -- 5.5 Broadband Dielectric Spectroscopy Measurement Techniques -- 5.5.1 Measurement Systems -- 5.5.2 Contacts -- 5.5.3 Calibration -- 5.5.4 Calibration in Parallel Plate Methods -- 5.5.5 Measurement Accuracy -- 5.6 Concluding Remarks -- References -- 6 Mechanical and Dynamic Mechanical Analysis of Proton-Conducting Polymers -- 6.1 Introduction -- 6.1.1 Molecular Configurations: The Morphology and Microstructure of Polymers -- 6.1.2 Molecular Motions -- 6.1.3 Glass Transition and Other Molecular Relaxations -- 6.2 Methodology of Uniaxial Tensile Tests -- 6.2.1 Elasticity and Young's Modulus E -- 6.2.2 Elasticity and Shear Modulus G -- 6.2.3 Elasticity and Cohesion Energy -- 6.3 Relaxation and Creep of Polymers -- 6.3.1 Stress Relaxation of Polymers -- 6.3.2 Creep of Polymers -- 6.4 Engineering Stress-Strain Curves of Polymers -- 6.4.1 True Stress-Strain Curve for Plastic Flow and Toughness of Polymers -- 6.4.2 Behavior of Composite Membranes -- 6.4.3 Behavior in the Glassy Regime -- 6.4.4 Influence of the Rate of Deformation -- 6.4.5 Effect of Temperature on Mechanical Properties -- 6.4.6 Thermal Strain -- 6.5 Stress-Strain Tensile Tests of Proton-Conducting Ionomers -- 6.5.1 Influence of Heat Treatment and Cross-Linking.

6.5.2 Behavior of Composites -- 6.5.3 Conclusions -- 6.6 Dynamic Mechanical Analysis (DMA) of Polymers -- 6.6.1 Principle of Measurement -- 6.6.2 Molecular Motions and Dynamic Mechanical Properties -- 6.6.3 Experimental Considerations: How Does the Instrument Work? -- 6.6.4 Parameters of Dynamic Mechanical Analysis -- 6.7 The DMA of Proton-Conducting Ionomers -- 6.7.1 Perfluorosulfonic Acid Ionomer Membranes -- 6.7.2 Nonfluorinated Membranes -- 6.7.3 Organic-Inorganic Composite (or Hybrid) Membranes -- Glossary -- References -- 7 Ab Initio Modeling of Transport and Structure of Solid State Proton Conductors -- 7.1 Introduction -- 7.2 Theoretical Methods -- 7.2.1 Ab Initio Electronic Structure -- 7.2.2 Ab Initio Molecular Dynamics (AIMD) -- 7.2.3 Empirical Valence Bond (EVB) Models -- 7.3 Polymer Electrolyte Membranes -- 7.3.1 Local Microstructure -- 7.3.2 Proton Dissociation, Transfer, and Separation -- 7.4 Crystalline Proton Conductors and Oxides -- 7.4.1 Crystalline Proton Conductors -- 7.4.2 Oxides -- 7.5 Concluding Remarks -- References -- 8 Perfluorinated Sulfonic Acids as Proton Conductor Membranes -- 8.1 Introduction on Polymer Electrolyte Membranes for Fuel Cells -- 8.2 General Properties of Polymer Electrolyte Membranes -- 8.2.1 Ion Exchange of Polymers Electrolytes in H+ Form -- 8.3 Perfluorinated Membranes Containing Superacid -SO3H Groups -- 8.3.1 Nafion Preparation -- 8.3.2 Nafion Morphology -- 8.3.3 Nafion Water Uptake in Liquid Water at Different Temperatures -- 8.3.4 Water-Vapor Sorption Isotherms of Nafion -- 8.3.5 Curves T/nc for Nafion 117 Membranes in H+ Form -- 8.3.6 Water Uptake and Tensile Modulus of Nafion -- 8.3.7 Colligative Properties of Inner Proton Solutions in Nafion -- 8.3.8 Thermal Annealing of Nafion -- 8.3.9 MCPI Method -- 8.3.10 Proton Conductivity of Nafion.

8.4 Some Information on Dow and on Recent Aquivion® Ionomers -- 8.5 Instability of Proton Conductivity of Highly Hydrated PFSA Membranes -- 8.6 Composite Nafion Membranes -- 8.6.1 Silica-Filled Ionomer Membranes -- 8.6.2 Metal Oxide-Filled Nafion Membranes -- 8.6.3 Layered Zirconium Phosphate- and Zirconium Phosphonate-Filled Ionomer Membranes -- 8.6.4 Heteropolyacid-Filled Membranes -- 8.7 Some Final Remarks and Conclusions -- References -- 9 Proton Conductivity of Aromatic Polymers -- 9.1 Introduction -- 9.2 Synthetic Strategies of the Various Acid-Functionalized Aromatic Polymers with Proton Transport Ability -- 9.2.1 Sulfonated Poly(arylene ether)s -- 9.2.2 Sulfonated Polyimides -- 9.2.3 Other Aromatic Polymers as PEMs -- 9.3 Approaches to Enhance Proton Conductivity -- 9.3.1 Nanophase-Separated Microstructures Containing Proton-Conducting Channels -- 9.3.2 Replacement of -Ph-SO3H by -CF2 -SO3H -- 9.3.3 Synthesis of High-IEC PEMs -- 9.3.4 Composite Membranes -- 9.4 Balancing Proton Conductivity, Dimensional Stability, and Other Properties -- 9.5 Electrochemical Performance of Aromatic Polymers -- 9.5.1 PEMFC Performance -- 9.5.2 DMFC Performance -- 9.6 Summary -- References -- 10 Inorganic Solid Proton Conductors -- 10.1 Fundamentals of Ionic Conduction in Inorganic Solids -- 10.1.1 Defect Concentrations -- 10.1.2 Defect Mobilities -- 10.1.3 Kr€oger-Vink Nomenclature -- 10.1.4 Ionic Conduction in the Bulk: Hopping Model -- 10.2 General Considerations on Inorganic Solid Proton Conductors -- 10.2.1 Classification of Solid Proton Conductors -- 10.3 Low-Dimensional Solid Proton Conductors: Layered and Porous Structures -- 10.3.1 β- and β"-Alumina-Type -- 10.3.2 Layered Metal Hydrogen Phosphates -- 10.3.3 Micro- and Mesoporous Structures -- 10.4 Three-Dimensional Solid Proton Conductors: "Quasi-Liquid" Structures -- 10.4.1 Solid Acids.

10.4.2 Acid Salts -- 10.4.3 Amorphous and Gelled Oxides and Hydroxides -- 10.5 Three-Dimensional Solid Proton Conductors: Defect Mechanisms in Oxides -- 10.5.1 Perovskite-Type Oxides -- 10.5.2 Other Structure Types -- 10.6 Conclusion -- References -- Index.
Abstract:
Proton conduction can be found in many different solid materials, from organic polymers at room temperature to inorganic oxides at high temperature. Solid state proton conductors are of central interest for many technological innovations, including hydrogen and humidity sensors, membranes for water electrolyzers and, most importantly, for high-efficiency electrochemical energy conversion in fuel cells. Focusing on fundamentals and physico-chemical properties of solid state proton conductors, topics covered include: Morphology and Structure of Solid Acids Diffusion in Solid Proton Conductors by Nuclear Magnetic Resonance Spectroscopy Structure and Diffusivity by Quasielastic Neutron Scattering Broadband Dielectric Spectroscopy Mechanical and Dynamic Mechanical Analysis of Proton-Conducting Polymers Ab initio Modeling of Transport and Structure Perfluorinated Sulfonic Acids Proton-Conducting Aromatic Polymers Inorganic Solid Proton Conductors Uniquely combining both organic (polymeric) and inorganic proton conductors, Solid State Proton Conductors: Properties and Applications in Fuel Cells provides a complete treatment of research on proton-conducting materials.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: