Cover image for Optical Devices in Ophthalmology and Optometry : Technology, Design Principles and Clinical Applications.
Optical Devices in Ophthalmology and Optometry : Technology, Design Principles and Clinical Applications.
Title:
Optical Devices in Ophthalmology and Optometry : Technology, Design Principles and Clinical Applications.
Author:
Kaschke, Michael.
ISBN:
9783527648993
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (639 pages)
Contents:
Cover -- Title page -- Contents -- Preface -- Part One -- 1 Structure and Function -- 1.1 Anatomy of the Human Eye -- 1.2 Retina: The Optical Sensor -- 1.2.1 Retinal Structure -- 1.2.2 Functional Areas -- 1.3 Recommended Reading -- References -- 2 Optics of the Human Eye -- 2.1 Optical Imaging -- 2.1.1 Entrance and Exit Pupils -- 2.1.2 Cardinal Points -- 2.1.3 Eye Axes -- 2.1.4 Accommodation -- 2.1.5 Resolution -- 2.1.6 Adaption -- 2.1.7 Stiles-Crawford Effect -- 2.1.8 Depth of Field -- 2.1.9 Binocular Vision -- 2.1.10 Spectral Properties -- 2.2 Schematic Eye Models -- 2.2.1 Paraxial Model: The Gullstrand Eye -- 2.2.2 Finite Wide-Angle Models -- 2.2.3 Applications of Eye Models -- 2.3 Color Vision -- 2.4 Recommended Reading -- References -- 3 Visual Disorders and Major Eye Diseases -- 3.1 Refractive Errors -- 3.1.1 Axial-Symmetric Ametropia: Myopia and Hyperopia -- 3.1.2 Astigmatism -- 3.1.3 Notations of Spherocylindric Refraction in Astigmatic Eyes -- 3.1.4 Anisometropia -- 3.1.5 Distribution of Refractive Errors -- 3.1.6 Refractive Errors Caused by Diseases -- 3.2 Cataract -- 3.3 Glaucoma -- 3.4 Age-Related Macular Degeneration -- 3.4.1 ARM -- 3.4.2 Dry AMD -- 3.4.3 Wet AMD -- 3.5 Diabetic Retinopathy -- 3.6 Retinal Vein Occlusions -- 3.7 Infective Eye Diseases -- 3.7.1 Trachoma -- 3.7.2 Onchocerciasis -- 3.8 Major Causes for Visual Impairment -- 3.9 Major Causes of Blindness -- 3.10 Socio-Economic Impact of Eye Diseases -- 3.11 Recommended Reading -- Problems to Chapters 1-3 -- References -- Part Two -- 4 Introduction to Ophthalmic Diagnosis and Imaging -- 4.1 Determination of the Eye's Refractive Status -- 4.2 Visualization, Imaging, and Structural Analysis -- 4.3 Determination of the Eye's Functional Status -- 4.3.1 Global Functional Status -- 4.3.2 Local Functional Status -- 4.4 Light Hazard Protection -- References.

5 Determination of the Refractive Status of the Eye -- 5.1 Retinoscopy -- 5.1.1 Illumination Beam Path -- 5.1.2 Observation Beam Path -- 5.1.3 Measurement Procedure -- 5.1.4 Accuracy in Retinoscopy -- 5.1.5 Applications -- 5.2 Automated Objective Refractometers (Autorefractors) -- 5.2.1 Common Characteristics of Autorefractors -- 5.2.2 Measuring Methods -- 5.2.3 Measurement Accuracy and Limitations of Automatic Refractometers -- 5.3 Aberrometers -- 5.3.1 Fundamentals of Aberrometry -- 5.3.2 General Measurement Principles for Aberrometers -- 5.3.3 General Remarks on Aberrometry -- 5.3.4 Hartmann-Shack Wavefront Aberrometer (Outgoing Light Aberrometer) -- 5.3.5 Ingoing Light Aberrometers -- 5.3.6 Commercial Aberrometers -- 5.4 Wavefront Reconstruction and Wavefront Analysis -- 5.4.1 From Wavefront to Refraction (Wavefront Analysis) -- 5.4.2 Applications of Wavefront Analysis -- 5.5 Excursus: Refractive Correction with Eye Glasses and Contact Lenses -- 5.6 Recommended Reading -- 5.7 Problems -- References -- 6 Optical Visualization, Imaging, and Structural Analysis -- 6.1 Medical Magnifying Systems -- 6.1.1 Optics of a Single Loupe -- 6.1.2 Medical Loupes -- 6.2 Surgical Microscopes -- 6.2.1 Requirements for Surgical Microscopes -- 6.2.2 Functional Principle -- 6.2.3 Modular Structure of Surgical Microscopes -- 6.2.4 Prospects -- 6.3 Reflection Methods for Topographic Measurements -- 6.3.1 Keratometer -- 6.3.2 Placido Ring Corneal Topographer -- 6.4 Slit Lamp -- 6.4.1 Functional Principle -- 6.4.2 Modular Structure -- 6.4.3 Types of Illumination for Various Applications -- 6.4.4 Accessories for Other Examinations and Measurements -- 6.4.5 Prospects -- 6.5 Scanning-Slit Projection Devices -- 6.5.1 Lateral Scanning-Slit Projection Techniques -- 6.5.2 Scheimpflug Imaging of Rotating-Slit Projections -- 6.5.3 Clinical Relevance and Applications.

6.6 Ophthalmoscope -- 6.6.1 Functional Principle -- 6.6.2 Direct Ophthalmoscope -- 6.6.3 Indirect Ophthalmoscope -- 6.7 Fundus Camera -- 6.7.1 Requirements for a Fundus Camera -- 6.7.2 Functional Principle -- 6.7.3 Field of View and Magnification -- 6.7.4 Wide-Field Imaging -- 6.7.5 Color and Monochrome Imaging -- 6.7.6 Fluorescence Angiography -- 6.7.7 Fundus Autofluorescence -- 6.7.8 Stereoscopic Imaging and Analysis -- 6.7.9 Equipment Solutions -- 6.7.10 Prospects -- 6.8 Scanning-Laser Devices -- 6.8.1 Confocal Scanning-Laser Ophthalmoscope -- 6.8.2 Confocal Scanning-Laser Tomograph -- 6.8.3 Scanning-Laser Polarimeter -- 6.9 Recommended Reading -- 6.10 Problems -- References -- 7 Optical Coherence Methods for Three-Dimensional Visualization and Structural Analysis -- 7.1 Introduction to Optical Coherence Tomography -- 7.2 Development of OCT and LCI as an Example of Modern Medical Technology Innovation -- 7.2.1 Academic Research - Conception of OCT (until 1993) -- 7.2.2 First Generation of Commercial OCTs (1993-2002) -- 7.2.3 Second Generation of OCTs - ZEISS Stratus OCT (2002-2006) -- 7.2.4 Third Generation of OCTs - Frequency-Domain OCT (2007-current) -- 7.3 Principles of Low-Coherence Interferometry and Optical Coherence Tomography -- 7.3.1 Michelson Interferometry with Coherent Light -- 7.3.2 Michelson Interferometry with Low-Coherence Light -- 7.3.3 Time-Domain OCT -- 7.3.4 Frequency-Domain OCT -- 7.3.5 Swept-Source OCT -- 7.3.6 Overview and Comparison of OCT Systems -- 7.4 Elements of OCT Theory -- 7.4.1 Theory of Time-Domain OCT - Axial Resolution -- 7.4.2 Theory of Frequency-Domain OCT -- 7.4.3 Effect of Group Velocity Dispersion in OCT Systems -- 7.4.4 Sensitivity and Signal-To-Noise Ratio in TD-OCT and FD-OCT -- 7.5 Device Design of OCTs -- 7.5.1 Light Sources -- 7.5.2 Commercial Systems -- 7.6 Ophthalmic Applications of OCT.

7.6.1 Posterior Segment of the Eye -- 7.6.2 Anterior Part of the Eye -- 7.7 Optical Biometry by Low-Coherence Interferometry -- 7.7.1 Dual-Beam Low-Coherence Interferometry -- 7.7.2 Applications of Optical Biometry -- 7.8 Prospects -- 7.9 Recommended Reading -- 7.10 Problems -- References -- 8 Functional Diagnostics -- 8.1 Visual Field Examination -- 8.1.1 Physiological Aspects and Functional Principles -- 8.1.2 Basic Perimeter Design -- 8.1.3 Alternative Perimetric Concepts -- 8.1.4 Prospects -- 8.2 Metabolic Mapping -- 8.2.1 Microcirculation Mapping -- 8.2.2 Fluorophore Mapping -- 8.2.3 Prospects -- 8.3 Recommended Reading -- 8.4 Problems -- References -- Part Three -- 9 Laser-Tissue Interaction -- 9.1 Absorption -- 9.2 Elastic Scattering -- 9.2.1 Rayleigh Scattering -- 9.2.2 Mie Scattering -- 9.3 Optical Properties of Biological Tissue -- 9.4 Interaction of Irradiated Biological Tissue -- 9.4.1 Photochemical Response -- 9.4.2 Photothermal Response -- 9.4.3 Photoablation -- 9.4.4 Plasma-Induced Ablation and Photodisruption -- 9.5 Propagation of Femtosecond Pulses in Transparent Media -- 9.5.1 Self-Focusing -- 9.5.2 Self-Phase Modulation -- 9.5.3 Group Velocity Dispersion -- 9.6 Ophthalmic Laser Safety -- 9.6.1 Laser Classes -- 9.6.2 Safe Use of Ophthalmic Laser Systems -- 9.7 Recommended Reading -- 9.8 Problems -- References -- 10 Laser Systems for Treatment of Eye Diseases and Refractive Errors -- 10.1 Laser Systems Based on Photochemical Interactions -- 10.1.1 Basics of Photodynamic Therapy -- 10.1.2 Technical Equipment Concepts -- 10.1.3 Treatment Procedure -- 10.1.4 Prospects -- 10.2 Laser Systems Based on Photothermal Interactions -- 10.2.1 Functional Principle -- 10.2.2 Process Parameters -- 10.2.3 Treatment Modes -- 10.2.4 Technical Equipment Concepts -- 10.2.5 Clinical Applications -- 10.2.6 Prospects.

10.3 Laser Systems Based on Photoablation -- 10.3.1 Basics of Photoablation Treatments -- 10.3.2 Technical Equipment Concepts -- 10.3.3 Surgical Ablation Techniques -- 10.3.4 Prospects -- 10.4 Laser Systems Based on Photodisruption with Nanosecond Pulses -- 10.4.1 Functional Principle -- 10.4.2 Process Parameters -- 10.4.3 Technical Equipment Concepts -- 10.4.4 Clinical Applications -- 10.4.5 Prospects -- 10.5 Laser Systems Based on Plasma-Induced Ablation with Femtosecond Pulses -- 10.5.1 Functional Principle -- 10.5.2 Process Parameters -- 10.5.3 Technical Equipment Concepts -- 10.5.4 Clinical Applications -- 10.5.5 Prospects -- 10.6 Recommended Reading -- 10.7 Problems -- References -- Appendix A Basics of Optics -- A.1 Geometric Optics and Optical Imaging -- A.1.1 Refraction and Dispersion -- A.1.2 Imaging by Spherical Surfaces -- A.1.3 The Ray Tracing Approach to Paraxial Optical Systems -- A.1.4 Aperture Stops, Field Stops, and Pupils -- A.1.5 Limitations of the Paraxial Beam Approximation -- A.1.6 Aberrations -- A.1.7 Wavefront Aberration and Image Quality -- A.1.8 Classification and Expansion of the Wave Aberration Function -- A.1.9 Chromatic Aberration -- A.2 Wave Optics -- A.2.1 Monochromatic Harmonic Waves -- A.2.2 Paraxial Solutions of the Wave Equation -- A.2.3 Monochromatic Superposition of Harmonic Waves -- A.2.4 Polychromatic Superposition of Waves -- A.3 Recommended Reading -- A.4 Problems -- References -- Appendix B Basics of Laser Systems -- B.1 Einstein's Two-Level Model of Light-Atom Interaction -- B.1.1 Absorption -- B.1.2 Spontaneous emission -- B.1.3 Stimulated emission -- B.1.4 Relation of Einstein Coefficients -- B.2 Light Amplification by Stimulated Emission -- B.2.1 Conditions for Population Inversion -- B.2.2 Multilevel Optical Pumping -- B.3 Laser Oscillator -- B.3.1 Inversion Threshold -- B.3.2 Standing Wave Condition.

B.4 The Gaussian Oscillator.
Abstract:
Medical technology is a fast growing field. This new title gives a comprehensive review of modern optical technologies alongside their clinical deployment. It bridges the technology and clinical domains and will be suitable in both technical and clinical environments. It introduces and develops basic physical methods (in optics, photonics, and metrology) and their applications in the design of optical systems for use in medical technology with a special focus on ophthalmology. Medical applications described in detail demonstrate the advantage of utilizing optical-photonic methods. Exercises and solutions for each chapter help understand and apply basic principles and methods. An associated website run by the authors will include slides to facilitate the teaching/training of this material, and typical images collected by the described methods, eg videos of endoscopy or navigation, OCT, etc.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: