Cover image for Nanotechnologies for Synthetic Super Non-Wetting Surfaces.
Nanotechnologies for Synthetic Super Non-Wetting Surfaces.
Title:
Nanotechnologies for Synthetic Super Non-Wetting Surfaces.
Author:
Senez, Vincent.
ISBN:
9781119015208
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (190 pages)
Series:
FOCUS Series
Contents:
Cover -- Title Page -- Copyright -- Contents -- Chapter 1: Nanotechnologies for Synthetic Super Non-wetting Surfaces -- 1.1. Introduction -- 1.2. Modeling of liquid-solid interaction -- 1.3. Microscale and nanoscale coating processes -- 1.4. Experimental characterization -- 1.5. Emerging applications -- 1.6. Conclusion -- 1.7. Bibliography -- Chapter 2: Wetting on Heterogeneous Surfaces -- 2.1. Introduction -- 2.2. Wetting of an ideal surface: the Young contact angle -- 2.3. Real surfaces: apparent contact angle and contact angle hysteresis -- 2.4. Relationship between contact angle hysteresis and drop adhesion -- 2.5. Wetting of heterogeneous materials: the Wenzel and Cassie-Baxter models -- 2.5.1. Impact of roughness: the Wenzel wetting state -- 2.5.2. Impact of chemical heterogeneities: the Cassie-Baxter wetting state -- 2.5.3. The lotus effect: toward super non-wetting surfaces -- 2.6. Conclusion -- 2.7. Bibliography -- Chapter 3: Engineering Super Non-wetting Materials -- 3.1. Introduction -- 3.2. Surface robustness -- 3.2.1. Stability of Cassie and Wenzel wetting states -- 3.2.2. The contact line pinning criterion -- 3.2.3. The Cassie to Wenzel transition -- 3.2.4. Influence of sidewall angle -- 3.2.5. Designing superoleophobic surfaces -- 3.2.6. Conclusion -- 3.3. Contact angle hysteresis on super non-wetting materials -- 3.3.1. Contact line pinning on dilute micropillars -- 3.3.2. Computing metastable states -- 3.3.3. Contact angle hysteresis modeling: perspectives -- 3.4. Conclusion -- 3.5. Bibliography -- Chapter 4: Fabrication of Synthetic Super Non-wetting Surfaces -- 4.1. Introduction -- 4.2. Full substrate technologies -- 4.2.1. Thermal evaporation -- 4.2.2. Pulsed laser deposition -- 4.2.3. Sputtering deposition -- 4.2.4. Atomic layer deposition -- 4.2.5. Plasma-enhanced chemical vapor deposition.

4.2.6. Thermal spraying deposition -- 4.2.7. Electrospray deposition -- 4.2.8. Electrospinning -- 4.2.9. Electroless plating deposition -- 4.2.10. Electroplating -- 4.2.11. Chemical solution deposition (spin/dip/spray/blade coating) -- 4.2.12. Colloidal assembly -- 4.2.13. Hydrothermal synthesis -- 4.2.14. Catalyst-assisted growth -- 4.2.15. Controlled radical polymerizations -- 4.3. Direct writing technologies -- 4.3.1. Inkjet printing -- 4.3.2. Drop casting -- 4.3.3. Laser-assisted deposition -- 4.3.4. Contact printing -- 4.3.5. Dip pen lithography -- 4.3.6. Pneumatic dispensing -- 4.3.7. Screen printing -- 4.4. Conclusion -- 4.5. Bibliography -- Chapter 5: Characterization Techniques for Super Non-wetting Surfaces -- 5.1. Introduction -- 5.2. The sessile drop method -- 5.2.1. Equipment and experimental procedure -- 5.2.2. Drop shape analysis -- 5.2.3. The volume oscillation method -- 5.2.4. The tilted plate method -- 5.3. Wilhelmy method -- 5.4. Robustness measurement -- 5.4.1. Drop compression -- 5.4.2. Drop evaporation -- 5.4.3. Hydrostatic pressure -- 5.4.4. Drop impact -- 5.4.5. Other methods (electrowetting and surface vibrations) -- 5.4.6. Conclusion on the robustness measurement techniques -- 5.5. Advanced techniques for better understanding of super non-wetting surfaces -- 5.5.1. Imaging of the 3D geometry of the composite interface -- 5.5.2. Imaging of the temporal evolution of the 3D composite interface -- 5.5.3. Conclusion -- 5.6. Conclusion -- 5.7. Bibliography -- Chapter 6: Emerging Applications -- 6.1. Introduction -- 6.2. Lab-on-a-chip -- 6.2.1. Displacing liquid (continuous and digital) -- 6.2.2. Liquid confinement for detection (SERS and impedance spectroscopy) or analysis (mass spectrometry) -- 6.3. Drag reduction -- 6.4. Super non-wetting surfaces for the directed self-assembly of micro- and nano-objects.

6.5. Super non-wetting materials for cell biology -- 6.6. Slippery liquid-infused porous surfaces -- 6.7. Conclusion -- 6.8. Bibliography -- Index.
Abstract:
Texturing surfaces at micro- and/or nano-scales modifies the interactions of liquids and solids. This book is a summary of the state of the art concerning the development and use of micro/nano-technologies for the design of synthetic liquid repellent surfaces with a particular focus on super-omniphobic materials. It proposes a comprehensive understanding of the physical mechanisms involved in the wetting of these surfaces and reviews emerging applications in various fields such as energy harvesting and biology, as well as highlighting the current limitations and challenges which are yet to be overcome.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: