Cover image for Handbook of Biopolymer-Based Materials : From Blends and Composites to Gels and Complex Networks.
Handbook of Biopolymer-Based Materials : From Blends and Composites to Gels and Complex Networks.
Title:
Handbook of Biopolymer-Based Materials : From Blends and Composites to Gels and Complex Networks.
Author:
Thomas, Sabu.
ISBN:
9783527652488
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (909 pages)
Contents:
Handbook of Biopolymer-Based Materials: From Blends and Composites to Gels and Complex Networks -- Contents -- Foreword -- List of Contributors -- 1 Biopolymers: State of the Art, New Challenges, and Opportunities -- 1.1 Introduction -- 1.2 Biopolymers: A Niche For Fundamental Research in Soft Matter Physics -- 1.3 Biopolymers: An Endless Source of Applications -- 1.4 Topics Covered by the Book -- 1.5 Conclusions -- References -- 2 General Overview of Biopolymers: Structure, Properties, and Applications -- 2.1 Introduction -- 2.2 Plant Cell Wall Polysaccharides -- 2.2.1 Cellulose -- 2.2.1.1 Cellulose Extraction -- 2.2.1.2 Nanocellulose -- 2.2.1.3 Microfibrillated Cellulose -- 2.2.1.4 Cellulose Nanowhiskers -- 2.2.2 Hemicelluloses -- 2.2.2.1 Galactomannans -- 2.2.2.2 Konjac Glucomannan -- 2.2.2.3 Xylan -- 2.2.2.4 Xyloglucan -- 2.2.3 Pectins -- 2.3 Biocomposites -- 2.3.1 Natural Fiber Composites -- 2.3.2 Cellulose Composites -- 2.3.3 Cellulose-Polymer Interactions -- 2.3.4 Semi-Solid Composites -- 2.4 Future Outlook -- References -- 3 Biopolymers from Plants -- 3.1 Introduction -- 3.2 Lipid and Phenolic Biopolymers -- 3.2.1 The Biopolymer Cutin -- 3.2.1.1 Cutin Monomers: Biosynthesis and Physicochemical Characteristics -- 3.2.1.2 Molecular Architecture of Cutin -- 3.2.1.3 Cutin Biosynthesis -- 3.2.2 Lignin -- 3.2.2.1 Monomer Precursors and Chemical Reactivity -- 3.2.2.2 Lignin Biosynthesis -- 3.2.3 Suberin -- 3.2.3.1 Chemical Composition -- 3.2.3.2 Biosynthesis and Fine Structure -- 3.3 Carbohydrate Biopolymers: Polysaccharides -- 3.3.1 Structural Polysaccharides -- 3.3.1.1 Cellulose -- 3.3.1.2 Hemicellulose -- 3.3.1.3 Pectin -- 3.3.2 Storage Polysaccharides -- 3.3.2.1 Starch -- 3.3.2.2 Fructans: Inulin -- 3.3.3 Other: Gums (Guar Gum, Gum Arabic, Gum Karaya, Gum Tragacanth, and Locust Bean Gum) -- 3.4 Isoprene Biopolymers: Natural Rubber.

3.4.1 cis-Polyisoprene -- 3.4.1.1 Occurrence -- 3.4.1.2 Composition, Structure, and Properties -- 3.4.1.3 cis-1,4-Polyisoprene Biosynthesis -- 3.4.1.4 Applications -- 3.4.2 trans-Polyisoprene -- 3.5 Concluding Remarks -- References -- 4 Bacterial Biopolymers and Genetically Engineered Biopolymers for Gel Systems Application -- 4.1 Introduction -- 4.1.1 Nucleic Acid Biopolymers: Central Dogma -- 4.2 Microbial Polysaccharides as Biopolymers -- 4.2.1 Synthesis and Applications -- 4.3 Microbial Biopolymers as Drug Delivery Vehicle -- 4.3.1 ε-Poly-L-Lysine (ε-PL) and Its Applications -- 4.3.2 Polyhydroxyalkanoates and Its Applications -- 4.4 Polyanhydrides -- 4.5 Recombinant Protein Polymer Production -- 4.6 Recombinant Genetically Engineered Biopolymer : Elastin -- 4.7 Collagen as an Ideal Biopolymer -- 4.7.1 Microbial Recombinant Collagens: Production in Pichia Pastoris -- 4.8 Biopolymers for Gel System -- 4.9 Hydrogels of Biopolymers for Regenerative Medicine -- 4.9.1 Polysaccharide Hydrogels -- 4.9.2 Cellulose-Derived Biopolymers-Based Hydrogels -- 4.9.3 Protein Biopolymers-Based Hydrogels -- 4.10 Supermacroporous Cryogel Matrix from Biopolymers -- 4.10.1 Protein Cryogel -- 4.11 Biopolymers Impact on Environment -- 4.12 Conclusion -- References -- 5 Biopolymers from Animals -- 5.1 Introduction -- 5.2 Chitin and Hyaluronic Acid in the Living World -- 5.3 Milestones in Chitin History -- 5.4 From Trehalose to Chitin -- 5.5 Chitin Synthase -- 5.6 Regulation of Chitin Synthesis in Fungi -- 5.7 Organization of Chitin in the Fungal Cell Wall -- 5.8 Organization of Chitin in the Arthropod Cuticle -- 5.9 Chitin-Organizing Factors -- 5.10 Secretion and Cuticle Formation -- 5.11 Transcriptional Regulation of Cuticle Production -- 5.12 Chitin Synthesis Inhibitors -- 5.13 Noncuticular Chitin in Insects -- 5.14 Chitin as a Structural Element.

5.15 Application of Chitin -- 5.16 Conclusion -- References -- 6 Polymeric Blends with Biopolymers -- 6.1 Introduction -- 6.2 Starch-Based Blends -- 6.2.1 Polymer Selection for Starch Blending -- 6.2.2 Starch Structure -- 6.2.3 Uncompatibilized Blends -- 6.2.4 Compatibilization -- 6.2.5 Composites -- 6.3 Blends with Chitosan (One Amino Group Too Much . . . ) -- 6.4 Future Perspectives -- 6.4.1 Biopolymer Plasticization -- 6.4.2 Blend Morphology and Compatibilization -- 6.4.3 Blend Processing: Technological Aspects -- References -- 7 Macro-, Micro-, and Nanocomposites Based on Biodegradable Polymers -- 7.1 Introduction -- 7.2 Biodegradable Polymers -- 7.2.1 Classification -- 7.2.2 Agro-Polymers: The Case of Starch -- 7.2.2.1 Native Starch Structure -- 7.2.2.2 Plasticized Starch -- 7.2.3 Biodegradable Polyesters -- 7.2.3.1 Polyesters Based on Agro-Resources -- 7.2.3.2 Petroleum-Based Polyesters -- 7.3 Biocomposites -- 7.3.1 Generalities -- 7.3.2 The Case of Biocomposites Based on Agro-Polymers -- 7.3.2.1 Cellulose Fiber Reinforcement -- 7.3.2.2 Lignin and Mineral Fillers -- 7.3.3 The Case of Biocomposites Based on Biopolyesters -- 7.3.3.1 Generalities -- 7.3.3.2 The Case of Biocomposites Based on Aromatic Copolyesters -- 7.4 Nanobiocomposites -- 7.4.1 Generalities -- 7.4.2 Nanobiocomposites Based on Agro-Polymers (Starch) -- 7.4.2.1 Whisker-Based Nanobiocomposites -- 7.4.2.2 Starch Nanocrystal-Based Nanobiocomposites -- 7.4.2.3 Nanoclay-Based Nanobiocomposites -- 7.4.3 Nanobiocomposites Based on Biopolyesters -- 7.4.3.1 Poly(lactic acid)-Based Nanobiocomposites -- 7.4.3.2 Polyhydroxyalkanoate-Based Nanobiocomposites -- 7.4.3.3 Polycaprolactone-Based Nanobiocomposites -- 7.4.3.4 Biodegradable Aliphatic Copolyester-Based Nanobiocomposites -- 7.4.3.5 Aromatic Copolyester-Based Nanobiocomposites -- References -- 8 IPNs Derived from Biopolymers.

8.1 Introduction -- 8.2 Types of IPNs -- 8.3 IPNs Derived from Biopolymers -- 8.3.1 Alginate -- 8.3.2 Agarose -- 8.3.3 Chitosan -- 8.3.4 Starch -- 8.3.5 Dextran -- 8.3.6 Gum Arabic -- 8.3.7 Fibrinogen -- 8.3.8 Collagen and Gelatin -- 8.3.9 Cellulose and Cellulose Derivatives -- 8.3.10 Polyhydroxyalkanoates -- 8.3.11 Lactide-Derived Polymers -- 8.4 Manufacture of IPNs -- 8.4.1 Casting-Evaporation Processing -- 8.4.2 Emulsification Cross-Linking Technique -- 8.4.3 Miniemulsion/Inverse Miniemulsion Technique -- 8.4.4 Freeze Drying Technique -- 8.5 Characterization of IPNs -- 8.5.1 Morphological and Structural Characterization -- 8.5.2 FTIR Spectroscopy -- 8.5.4 Rheological Characterization -- 8.5.5 Swelling Behavior Characterization -- 8.5.6 Thermal Characterization -- 8.6 Applications of IPNs -- 8.6.1 Drug Delivery Applications -- 8.6.2 Scaffolds for Tissue Engineering -- 8.6.3 Other Biomedical Applications -- 8.6.4 Antibacterial Applications -- 8.6.5 Sensor, Actuators, and Artificial Muscle Applications -- 8.7 Conclusions -- References -- 9 Associating Biopolymer Systems and Hyaluronate Biomaterials -- 9.1 Introduction -- 9.2 Synthesis and Self-Association of Hydrophobically Modified Derivatives of Chitosan and Hyaluronic Acid in Aqueous Solution -- 9.2.1 General Aspects of Association in Amphiphilic Polyelectrolytes -- 9.2.2 Synthesis and Behavior in Aqueous Solution of Hydrophobically Modified Water-Soluble Derivatives of Chitosan -- 9.2.3 Synthesis and Behavior in Aqueous Solution of Hydrophobically Modified Water-Soluble Derivatives of Hyaluronic Acid -- 9.3 Design of Novel Biomaterials Based on Chemically Modified Derivatives of Hyaluronic Acid -- 9.3.1 Nanoassemblies Based on Amphiphilic Hyaluronic Acid -- 9.3.2 Hydrogels for Cell Biology and Tissue Engineering -- 9.3.2.1 Strategies for the Cross-Linking of HA to Obtain Scaffolds for Cells.

9.3.2.2 Engineering Biological Functionality in Hyaluronic Acid-Based Scaffolds -- 9.3.2.3 Patterning of Hyaluronic Acid -- 9.4 Conclusions -- References -- 10 Polymer Gels from Biopolymers -- 10.1 Introduction -- 10.2 Experimental Methods -- 10.3 Polymerization and Gelation Kinetics -- 10.3.1 Fluoroprobe-Polymer Interactions -- 10.3.2 Real-Time Monitoring of Monomer Conversion -- 10.4 Sol-Gel Transition and Universality Discussion -- 10.5 Imprinting the Gels -- 10.6 Heterogeneity of Hydrogels -- 10.6.1 Effect of Ion Doping on Swelling Properties and Network Structure of Hydrogels -- 10.6.2 Current Measurements for Searching the Internal Morphology of the Gels -- 10.7 Ionic p-Type and n-Type Semiconducting Gels -- 10.7.1 Electrical Properties of Ionic p-Type and n-Type Semiconducting Gels -- 10.7.2 Polymeric Gel Diodes with Ionic Charge Carriers -- 10.8 Conclusions -- References -- 11 Conformation and Rheology of Microbial Exopolysaccharides -- 11.1 Introduction -- 11.2 Conformation of Polysaccharides -- 11.3 Secondary Solid-State Structures for Microbial Polysaccharides -- 11.3.1 No Secondary Solid-State Structure -- 11.3.2 Single-Chain Conformation -- 11.3.3 Simple or/and Double Helices -- 11.3.4 Double Helix -- 11.3.5 Triple Helix -- 11.4 Conformation in Solution: Solution Properties and Applications -- 11.4.1 Dextran and Pullulan -- 11.4.2 Hyaluronan -- 11.4.3 Xanthan -- 11.4.4 Succinoglycan -- 11.5 Gelling Properties in the Presence of Salts -- 11.5.1 β(1→4)-D-Glucuronan -- 11.5.2 Polysaccharide 1644 -- 11.5.3 Gellan and Similar Polysaccharides -- 11.5.4 β(1→3)-D-Glucans -- 11.5.5 YAS 34 -- 11.6 Conclusions -- References -- 12 Sulfated Polysaccharides in the Cell Wall of Red Microalgae -- 12.1 Introduction -- 12.2 Sulfated Polysaccharides from Red Microalgae - General Overview.

12.3 Sulfated Polysaccharides of Red Microalgal Cell Walls: Chemical Aspects.
Abstract:
This first systematic scientific reference in the area of micro- and nanostructured biopolymer systems discusses in two volumes the morphology, structure, dynamics, properties and applications of all important biopolymers, as well as their blends, composites, interpenetrating networks and gels. Selected leading researchers from industry, academia, government and private research institutions around the globe comprehensively review recent accomplishments in the field. They examine the current state of the art, new challenges, and opportunities, discussing all the synthetic routes to the generation of both micro- and nano-morphologies, as well as the synthesis, characterization and application of porous biopolymers. An outstanding resource for anyone involved in the fi eld of eco-friendly biomaterials for advanced technologies.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: