Cover image for Simulation and Optimization in Finance : Modeling with MATLAB, @Risk, or VBA.
Simulation and Optimization in Finance : Modeling with MATLAB, @Risk, or VBA.
Title:
Simulation and Optimization in Finance : Modeling with MATLAB, @Risk, or VBA.
Author:
Pachamanova, Dessislava.
ISBN:
9780470882108
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (786 pages)
Series:
Frank J. Fabozzi Series ; v.173

Frank J. Fabozzi Series
Contents:
Simulation and Optimization in Finance -- Contents -- Preface -- About the Authors -- Acknowledgments -- CHAPTER 1 Introduction -- OPTIMIZATION -- SIMULATION -- OUTLINE OF TOPICS -- PART One Fundamental Concepts -- CHAPTER 2 Important Finance Concepts -- 2.1 BASIC THEORY OF INTEREST -- 2.1.1 Compound Interest -- 2.1.2 Present Value and Future Value -- 2.2 ASSET CLASSES -- 2.2.1 Equities -- 2.2.2 Fixed Income Securities -- 2.3 BASIC TRADING TERMINOLOGY -- 2.3.1 Borrowing Funds to Purchase Securities -- 2.3.2 Long and Short Positions -- 2.4 CALCULATING RATE OF RETURN -- 2.5 VALUATION -- 2.5.1 Valuation Models for Equities -- 2.5.2 Valuation Models for Fixed Income Securities -- 2.6 IMPORTANT CONCEPTS IN FIXED INCOME -- 2.6.1 Spot Rates -- 2.6.2 The Term Structure -- 2.6.3 Forward Rates -- 2.6.4 Credit Spreads -- 2.6.5 Duration -- 2.6.6 Convexity -- 2.6.7 Key Rate Duration -- 2.6.8 Total Return -- SUMMARY -- NOTES -- CHAPTER 3 Random Variables, Probability Distributions, and Important Statistical Concepts -- 3.1 WHAT IS A PROBABILITY DISTRIBUTION? -- 3.2 BERNOULLI PROBABILITY DISTRIBUTION AND PROBABILITY MASS FUNCTIONS -- 3.3 BINOMIAL PROBABILITY DISTRIBUTION AND DISCRETE DISTRIBUTIONS -- 3.4 NORMAL DISTRIBUTION AND PROBABILITY DENSITY FUNCTIONS -- 3.5 CONCEPT OF CUMULATIVE PROBABILITY -- 3.6 DESCRIBING DISTRIBUTIONS -- 3.6.1 Measures of Central Tendency -- 3.6.2 Measures of Risk -- 3.6.3 Skew -- 3.6.4 Kurtosis -- 3.7 BRIEF OVERVIEW OF SOME IMPORTANT PROBABILITY DISTRIBUTIONS -- 3.7.1 Discrete Distributions -- 3.7.2 Continuous Distributions -- 3.8 DEPENDENCE BETWEEN TWO RANDOM VARIABLES: COVARIANCE AND CORRELATION -- 3.9 SUMS OF RANDOM VARIABLES -- 3.10 JOINT PROBABILITY DISTRIBUTIONS AND CONDITIONAL PROBABILITY -- 3.11 FROM PROBABILITY THEORY TO STATISTICAL MEASUREMENT: PROBABILITY DISTRIBUTIONS AND SAMPLING -- 3.11.1 Central Limit Theorem.

3.11.2 Confidence Intervals -- 3.11.3 Bootstrapping -- 3.11.4 Hypothesis Testing -- SUMMARY -- SOFTWARE HINTS -- NOTES -- CHAPTER 4 Simulation Modeling -- 4.1 MONTE CARLO SIMULATION: A SIMPLE EXAMPLE -- 4.1.1 Selecting Probability Distributions for the Inputs -- 4.1.2 Interpreting Monte Carlo Simulation Output -- 4.2 WHY USE SIMULATION? -- 4.2.1 Multiple Input Variables and Compounding Distributions -- 4.2.2 Incorporating Correlations -- 4.2.3 Evaluating Decisions -- 4.3 IMPORTANT QUESTIONS IN SIMULATION MODELING -- 4.3.1 How Many Scenarios? -- 4.3.2 Estimator Bias -- 4.3.3 Estimator Efficiency -- 4.4 RANDOM NUMBER GENERATION -- 4.4.1 Inverse Transform Method -- 4.4.2 What Defines a "Good" Random Number Generator? -- 4.4.3 Pseudorandom Number Generators -- 4.4.4 Quasirandom (Low-Discrepancy) Sequences -- 4.4.5 Stratified Sampling -- SUMMARY -- SOFTWARE HINTS -- NOTES -- CHAPTER 5 Optimization Modeling -- 5.1 OPTIMIZATION FORMULATIONS -- 5.1.1 Minimization vs. Maximization -- 5.1.2 Local vs. Global Optima -- 5.1.3 Multiple Objectives -- 5.2 IMPORTANT TYPES OF OPTIMIZATION PROBLEMS -- 5.2.1 Convex Programming -- 5.2.2 Linear Programming -- 5.2.3 Quadratic Programming -- 5.2.4 Second-Order Cone Programming -- 5.2.5 Integer and Mixed Integer Programming -- 5.3 OPTIMIZATION PROBLEM FORMULATION EXAMPLES -- 5.3.1 Portfolio Allocation -- 5.3.2 Cash Flow Matching -- 5.3.3 Capital Budgeting -- 5.4 OPTIMIZATION ALGORITHMS -- 5.4.1 Linear Optimization: The Simplex Algorithm and Interior Point Methods -- 5.4.2 Constrained Nonlinear Optimization: The KKT Conditions and Lagrange Multipliers -- 5.4.3 Integer Programming Algorithms -- 5.4.4 Randomized Search Algorithms -- 5.4.5 Algorithm Efficiency -- 5.5 OPTIMIZATION DUALITY -- 5.6 MULTISTAGE OPTIMIZATION -- 5.6.1 Finite State Space -- 5.6.2 Infinite State Space.

5.6.3 Steps in Formulating Multistage Optimization Problems -- 5.7 OPTIMIZATION SOFTWARE -- SUMMARY -- SOFTWARE HINTS -- NOTES -- CHAPTER 6 Optimization under Uncertainty -- 6.1 DYNAMIC PROGRAMMING -- 6.2 STOCHASTIC PROGRAMMING -- 6.2.1 Multistage Models -- 6.2.2 Mean-Risk Stochastic Models -- 6.2.3 Chance-Constrained Models -- 6.3 ROBUST OPTIMIZATION -- 6.3.1 Uncertainty Sets and Robust Counterparts -- 6.3.2 Multistage Robust Optimization -- SUMMARY -- NOTES -- PART Two Portfolio Optimization and Risk Measures -- CHAPTER 7 Asset Diversification and Efficient Frontiers -- 7.1 THE CASE FOR DIVERSIFICATION -- 7.2 THE CLASSICAL MEAN-VARIANCE OPTIMIZATION FRAMEWORK -- 7.3 EFFICIENT FRONTIERS -- 7.4 ALTERNATIVE FORMULATIONS OF THE CLASSICAL MEAN-VARIANCE OPTIMIZATION PROBLEM -- 7.4.1 Expected Return Formulation -- 7.4.2 Risk Aversion Formulation -- 7.5 THE CAPITAL MARKET LINE -- 7.6 EXPECTED UTILITY THEORY -- SUMMARY -- SOFTWARE HINTS -- NOTES -- CHAPTER 8 Advances in the Theory of Portfolio Risk Measures -- 8.1 CLASSES OF RISK MEASURES -- 8.1.1 Dispersion Risk Measures -- 8.1.2 Downside Risk Measures -- 8.2 VALUE-AT-RISK -- 8.2.1 The History of the Value-at-Risk Metric -- 8.2.2 Calculation of Value-at-Risk for a Normal Distribution -- 8.2.3 Calculation of Value-at-Risk Using Historical and Simulated Data Scenarios -- 8.2.4 VaR Calculation Example -- 8.2.5 Selection of Value-at-Risk Parameters and Regulatory Requirements -- 8.2.6 Optimization of Value-at-Risk -- 8.2.7 Arguments For and Against Value-at-Risk -- 8.3 CONDITIONAL VALUE-AT-RISK AND THE CONCEPT OF COHERENT RISK MEASURES -- 8.3.1 Estimation of Conditional Value-at-Risk from a Normal Distribution -- 8.3.2 Estimation of Conditional Value-at-Risk from a Discrete Distribution -- 8.3.3 Optimization of Conditional Value-at-Risk -- SUMMARY -- SOFTWARE HINTS -- NOTES.

CHAPTER 9 Equity Portfolio Selection in Practice -- 9.1 THE INVESTMENT PROCESS -- 9.1.1 Setting Investment Objectives -- 9.1.2 Developing and Implementing a Portfolio Strategy -- 9.1.3 Monitoring the Portfolio -- 9.1.4 Adjusting the Portfolio -- 9.2 PORTFOLIO CONSTRAINTS COMMONLY USED IN PRACTICE -- 9.2.1 Long-Only (No-Short-Selling) Constraints -- 9.2.2 Holding Constraints -- 9.2.3 Turnover Constraints -- 9.2.4 Risk Factor Constraints -- 9.2.5 Cardinality Constraints -- 9.2.6 Minimum Holding and Transaction Size Constraints -- 9.2.7 Round Lot Constraints -- 9.3 BENCHMARK EXPOSURE AND TRACKING ERROR MINIMIZATION -- 9.3.1 Standard Definition of Tracking Error -- 9.3.2 Alternative Ways of Defining Tracking Error -- 9.3.3 Actual vs. Predicted Tracking Error -- 9.4 INCORPORATING TRANSACTION COSTS -- 9.4.1 Linear Transaction Costs -- 9.4.2 Piecewise-Linear Transaction Costs -- 9.4.3 Quadratic Transaction Costs -- 9.4.4 Fixed Transaction Costs -- 9.5 INCORPORATING TAXES -- 9.6 MULTIACCOUNT OPTIMIZATION -- 9.7 ROBUST PARAMETER ESTIMATION -- 9.8 PORTFOLIO RESAMPLING -- 9.9 ROBUST PORTFOLIO OPTIMIZATION -- SUMMARY -- SOFTWARE HINTS -- NOTES -- CHAPTER 10 Fixed Income Portfolio Management in Practice -- 10.1 MEASURING BOND PORTFOLIO RISK -- 10.1.1 Interest Rate Risk -- 10.1.2 Yield Curve Risk -- 10.1.3 Spread Risk -- 10.1.4 Credit Risk -- 10.1.5 Estimating Value-at-Risk for Fixed Income Securities -- 10.2 THE SPECTRUM OF BOND PORTFOLIO MANAGEMENT STRATEGIES -- 10.2.1 Bond Market Indices -- 10.2.2 Pure Bond Indexing Strategy -- 10.2.3 Enhanced Indexing/Matching Primary Risk Factors Approach -- 10.2.4 Enhanced Indexing/Minor Risk Factor Mismatches -- 10.2.5 Active Management/Larger Risk Factor Mismatches -- 10.2.6 Active Management/Full-Blown Active -- 10.2.7 Using Quantitative Methods for Portfolio Allocation -- 10.3 LIABILITY-DRIVEN STRATEGIES.

10.3.1 Immunization Strategy for a Single-Period Liability -- 10.3.2 Cash Flow Matching Strategy -- SUMMARY -- NOTES -- PART Three Asset Pricing Models -- CHAPTER 11 Factor Models -- 11.1 THE CAPITAL ASSET PRICING MODEL -- 11.2 THE ARBITRAGE PRICING THEORY -- 11.3 BUILDING MULTIFACTOR MODELS IN PRACTICE -- 11.3.1 Regression Analysis -- 11.3.2 Factor Analysis -- 11.3.3 Principal Components Analysis -- 11.4 APPLICATIONS OF FACTOR MODELS IN PORTFOLIO MANAGEMENT -- 11.4.1 Portfolio Performance Measurement -- 11.4.2 Risk Decomposition in Equity Portfolios -- 11.4.3 Efficient Mean-Variance Optimization -- 11.4.4 Risk Decomposition in Bond Portfolios -- SUMMARY -- SOFTWARE HINTS -- NOTES -- CHAPTER 12 Modeling Asset Price Dynamics -- 12.1 BINOMIAL TREES -- 12.2 ARITHMETIC RANDOM WALKS -- 12.2.1 Simulation -- 12.2.2 Parameter Estimation -- 12.2.3 Arithmetic Random Walk: Some Additional Facts -- 12.3 GEOMETRIC RANDOM WALKS -- 12.3.1 Simulation -- 12.3.2 Parameter Estimation -- 12.3.3 Geometric Random Walk: Some Additional Facts -- 12.4 MEAN REVERSION -- 12.4.1 Simulation -- 12.4.2 Parameter Estimation -- 12.4.3 The Cox-Ingersoll-Ross Model for Interest Rates Dynamics -- 12.4.4 Geometric Mean Reversion -- 12.5 ADVANCED RANDOM WALK MODELS -- 12.5.1 Correlated Random Walks -- 12.5.2 Incorporating Jumps -- 12.5.3 Stochastic Volatility -- 12.6 STOCHASTIC PROCESSES -- SUMMARY -- SOFTWARE HINTS -- NOTES -- PART Four Derivative Pricing and Use -- CHAPTER 13 Introduction to Derivatives -- 13.1 BASIC TYPES OF DERIVATIVES -- 13.1.1 Forwards and Futures -- 13.1.2 Options -- 13.1.3 Swaps -- 13.2 IMPORTANT CONCEPTS FOR DERIVATIVE PRICING AND USE -- 13.2.1 Arbitrage -- 13.2.2 Hedging -- 13.3 PRICING FORWARDS AND FUTURES -- 13.4 PRICING OPTIONS -- 13.4.1 Using Binomial Trees to Price European Options -- 13.4.2 The Black-Scholes Formula for European Options.

13.4.3 Pricing American Options with Binomial Trees.
Abstract:
Engaging and accessible, this book and its companion Web site provide an introduction to the simulation and optimization techniques most widely used in finance, while, at the same time, offering essential information on the financial concepts surrounding these applications. This practical guide is divided into five informative parts: Part I, Fundamental Concepts, provides insights on the most important issues in finance, simulation, optimization, and optimization under uncertainty Part II, Portfolio Optimization and Risk Measures, reviews the theory and practice of equity and fixed income portfolio management, from classical frameworks to recent advances in the theory of risk measurement Part III, Asset Pricing Models, discusses classical static and dynamic models for asset pricing, such as factor models and different types of random walks Part IV, Derivative Pricing and Use, introduces important types of financial derivatives, shows how their value can be determined by simulation, and discusses how derivatives can be employed for portfolio risk management and return enhancement purposes Part V, Capital Budgeting Decisions, reviews capital budgeting decision models, including real options, and discusses applications of simulation and optimization in capital budgeting under uncertainty Supplemented with models and code in both spreadsheet-based software (@RISK, Solver, and VBA) and mathematical modeling software (MATLAB), Simulation and Optimization in Finance is a well-rounded guide to a dynamic discipline.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: