Cover image for Analysis And Control Of Complex Nonlinear Processes In Physics, Chemistry And Biology.
Analysis And Control Of Complex Nonlinear Processes In Physics, Chemistry And Biology.
Title:
Analysis And Control Of Complex Nonlinear Processes In Physics, Chemistry And Biology.
Author:
Schimansky-Geier, L.
ISBN:
9789812706911
Personal Author:
Physical Description:
1 online resource (453 pages)
Series:
World Scientific Lecture Notes in Complex Systems, v. 5
Contents:
Contents -- Preface -- 1. Noise-induced effects in excitable systems with local and global coupling X . R. Sailer, V. Beato, L. Schirrmnsky-Geier and H. Engel -- 1.1 Introduction -- 1.2 Excitability: What is it and how can we model it? -- 1.2.1 General concept -- 1.2.2 A simple model - the FitzHugh-Nagumo system -- 1.2.3 The Oregonator model for the light-sensitive Belousov-Zhabotinsky reaction -- 1.3 Stochastic methods -- 1.3.1 Langevin equation -- 1.3.2 Stochastic processes: White and colored noises -- 1.3.3 The Fokker-Planck equation -- 1.3.4 Moment dynamics -- 1.4 Stochastic excitable elements -- 1.4.1 The Langevin approach: Phase portraits under fluctuations -- 1.4.2 The Fokker-Planck approach: Numerical solutions -- 1.4.3 The phenomenon of coherence resonance -- 1.4.4 Coherence resonance with respect to the correlation time -- 1.5 Excitable elements with coupling -- 1.5.1 Local coupling: Noise induced nucleations -- 1.5.2 Propagation of trigger waves in the presence of noise -- 1.5.3 Pattern formation in dichotomously driven, locally coupled FitzHugh- Nagumo systems -- 1.5.4 Global coupling -- References -- 2 . Synchronization in periodically driven discrete systems T. Prager and L. Schimansky-Geier -- 2.1 Introduction -- 2.2 Stochastic synchronization in periodically driven systems -- 2.2.1 Synchronization in deterministic systems -- 2.2.2 Effective synchronization in stochastic systems -- 2.3 Discrete models of continuous stochastic dynamics -- 2.3.1 The doublewell system - a discrete Markovian description -- 2.3.2 Excitable dynamics - a phenomenological discrete model -- 2.4 The effective diffusion coefficient and mean frequency in periodically driven renewal processes -- 2.4.1 System cycles involving driven rate steps -- 2.5 Applications -- 2.5.1 Synchronization in a doublewell system -- 2.5.2 Synchronization in the FHN model.

2.5.3 Controlling molecular motors -- 2.6 Conclusion -- References -- 3. Spiral wave dynamics: Reaction and diffusion versus kinematics B. Fiedler, M. Georgi and N . Jangle -- 3.1 Phenomena -- 3.2 Reaction-diffusion spirals -- 3.2.1 Center manifold reductions -- 3.2.2 Center manifolds in unbounded domains -- 3.2.3 Lattice symmetry -- 3.2.4 Spiral tip dynamics -- 3.2.5 Reduced tip equations for the photosensitive system -- 3.2.6 Pinning versus drifting -- 3.3 Kinematics -- 3.3.1 Curves and tips -- 3.3.2 Rigidly rotating spirals -- 3.3.3 Eikonal meanders and drifts -- 3.4 Concluding remarks -- References -- 4. Cellular calcium oscillations: From bifurcation analysis to experiment A. Z. Politi, L. D. Gaspers, A. Brummer, A. P. Thomas and T. Hofer -- 4.1 Introduction -- 4.2 Background -- 4.3 Identification of feedbacks on IP3 -- 4.3.1 General properties of Ca2+-IP3 oscillators -- 4.3.2 A detailed model for Ca2+-IP3 interactions -- 4.3.3 Expression of an IP3 buffer suppresses Ca2+ oscillations -- 4.4 Physiological role of Ca2+ feedbacks on IP3 metabolism -- 4.4.1 The wide range of oscillation periods is due to interactions of IPS and Ca2+ dynamics -- 4.4.2 Intercellular coupling -- 4.5 Conclusions -- References -- 5. Pattern formation in semiconductors under the influence of time-delayed feedback control and noise E. Scholl, J. Hizanidis, P. Hovel and G. Stegemann -- 5.1 Introduction -- 5.2 Chaos control of domains and fronts in superlattices -- 5.3 Control of noise-induced oscillations in superlattices -- 5.4 Chaos control of spatio-temporal oscillations in resonant tunneling diodes -- 5.5 Noise-induced spatio-temporal patterns in the DBRT -- 5.6 Conclusions -- Acknowledgment -- References -- 6. Dynamics of coupled semiconductor lasers L. Recke, M. Wolfrum and S. Yanchuk -- 6.1. Coupled rate equations model -- 6.2. Structural properties of the model.

6.3. CW solutions in the case of no detuning -- 6.3.1. Dynamics in the synchronization subspace -- 6.3.2. Transverse stability of the synchronous C W solutions -- 6.3.3. Asynchronous C W solutions -- 6.4. Influence of the detuning -- 6.4.1. Stationary states in the presence of detuning -- 6.4.2. Regions of locking -- 6.4.3. Stationary states after the symmetry breaking -- 6.4.4. Self-pulsations -- 6.4.5. Identical amplitude synchronization -- 6.4.6. Inverse amplitude synchronization -- 6.4.7. Chaotic oscillations near Zero-Hopf bifurcation point -- 6.5. The case of a small delay -- 6.6. Three coupled identical lasers -- 6.6.1. Conditions for synchronization of the outer lasers -- 6.6.2. Transition t o chaotic synchronization via blowup of a transversely unstable synchronous invariant set -- 6.7. Arrays of coupled oscillators -- References -- 7. Trapping of phase fronts and twisted spirals in periodi- cally forced oscillatory media O. Rudzick and A . S. Makhailov -- 7.1. Periodically forced oscillatory media -- 7.2. The forced complex Ginzburg-Landau equation -- 7.3. Phase front propagation reversal -- 7.4. Phase approximation -- 7.5 Trapping of phase fronts -- 7.6. Twisted spirals -- References -- 8. Visualizing pitting corrosion on stainless steel M. Domhege, C. Punckt and H. H. Rotermund -- 8.1. Introduction -- 8.2. Background -- 8.3. Mathematical model -- 8.4 Experimental methods -- 8.5. Experimental results and discussion -- 8.6. Conclusion -- References -- 9. Unified approach to feedback-mediated control of spiral waves in excitable media V. S. Zykov and H. Engel -- 9.1. Introduction -- 9.2. Spiral waves under periodic parameter modulation -- 9.2.1. Experimental system and underlying mathematical model -- 9.2.2. Archimedean spiral approximation -- 9.2.3. Resonant drift of a spiral wave under periodic parameter modulation.

9.3. Discrete feedback control -- 9.3.1. Resonance attractor for spiral waves subjected t o one- channel feedback -- 9.3.2. Spiral wave drift near a straight line detector -- 9.3.3. Spiral wave drift near a curved one-dimensional detector -- 9.4. Continuous feedback control -- 9.4.1. Superposition principle for feedback-induced spiral drift -- 9.4.2. Two-point feedback control -- 9.4.3. Global feedback in circular and elliptical domains -- 9.5. Discussion -- References -- 10. Radiative driven instabilities M. Hegmann and E. Sedlmayr -- 10.1. Introduction -- 10.2 Gravitational/thermal instability -- 10.2.1. The Jeans instability -- 10.2.2. Thermal instability -- 10.2.3. Stochastic radiative transfer -- 10.2.3.1. Stochastic description of a turbulent velocity field -- 10.2.3.3. Non-LTE lane formation -- 10.2.4. On the cooling by CO -- 10.2.4.1. The model -- 10.2.4.2. Results -- 10.3. The structure of photon dominated regions -- 10.3.1 Numerical model -- 10.4. Radiative instability of dust formation -- 10.4.1. The instability -- 10.4.2. The model -- 10.4.3. Results -- References -- 11. Building oscillations bottom up: Elemental time scales of intracellular calcium dynamics R. Thul and M. Falcke -- 11.1. Introduction -- 11.2. Ca2+ model -- 11.3. Master equation -- 11.4. Fokker-Planck equations -- 11.5. Escape times -- 11.6. Results -- 11.6.1. Mean first passage time -- 11.6.2. Role of fluctuations -- 11.6.3. Distribution of first pussuye time -- 11.6.4. Continuous Ca2+ model -- 11.7. Discussion -- 11.8. Appendix A: Combinatorics for subunits -- 11.9. Appendix B: Proof of equation (32) -- References -- 12. Continuous wavelet spectral analysis of climate dynamics D. Maraun, J. Kurths and M , Holschneider -- 12.1. Introduction -- 12.2. Continuous wavelet transformation -- 12.3. Gaussian processes defined in the wavelet domain -- 12.3.1. Definitions.

12.3.2. Spectral measures -- 12.3.3. Example -- 12.4. Estimating wavelet spectra -- 12.4.1. Spectral estimators -- 12.4.2. Variance of the wavelet sample spectrum -- 12.4.3. Bias of the wavelet sample spectrum -- 12.4.4. Example -- 12.5. Significance testing -- 12.5.1. Sensitivity vs. Specificity -- 12.5.2. Pointwise testing of the wavelet spectrum -- 12.5.3. Areawise testing of the wavelet spectrum -- 12.5.4. Sensitivity and specificity of the areawise test -- 12.5.5. Testing of covarying power -- 12.6. Conclusions -- References -- 13. Synchronization of complex systems: Analysis and control M. Rosenblum and A. Pikovsky -- 13.1. Introduction -- 13.2. Simplest case: Periodically forced self-sustained oscillator -- 13.2.1. Self-sustained oscillators -- 13.2.2. Entrainment by external force: An example -- 13.2.3. Phase dynamics of a forced oscillator -- 13.3. Globally coupled oscillators -- 13.3.1. Globally coupled ensemble as a model of neural synchrony -- 13.4 Controlling neural synchrony -- 13.5 Conclusion -- References -- 14. Critical states of seismicity - Implications from a physical model for the seismic cycle G. Zoller, M. Holschneider and J. Kurths -- 14.1. Introduction -- 14.2. Modeling seismicity in real fault regions -- 14.2.1. Fault geometry and model framework -- 14.2.2. Plate motion -- 14.2.3. Friction and coseismic stress transfer -- quasidynamic approach -- 14.2.4. Model algorithm -- 14.2.5. Data -- 14.3. Results -- 14.3.1. Frequency-size distributions -- 14.3.2. Temporal occurrence of large earthquakes -- 14.3.3. Aftershocks and foreshocks -- 14.3.4. Accelerating moment release -- 14.4. Summary and conclusions -- References -- 15. Predator-prey oscillations, synchronization and pattern formation in ecological systems B. Blasius and R. Tonjes -- 15.1. Introduction -- 15.2. Predator prey systems and oscillations.

15.2.1. The Lotka-Volterra model - does war favour sharks?.
Abstract:
Nonlinear dynamics of complex processes is an active research field with large numbers of publications in basic research, and broad applications from diverse fields of science. Nonlinear dynamics as manifested by deterministic and stochastic evolution models of complex behavior has entered statistical physics, physical chemistry, biophysics, geophysics, astrophysics, theoretical ecology, semiconductor physics and -optics, etc. This field of research has induced a new terminology in science connected with new questions, problems, solutions and methods. New scenarios have emerged for spatio-temporal structures in dynamical systems far from equilibrium. Their analysis and possible control are intriguing and challenging aspects of the current research. The duality of fundamental and applied research is a focal point of its main attractivity and fascination. Basic topics and foundations are always linked to concrete and precise examples. Models and measurements of complex nonlinear processes evoke and provoke new fundamental questions that diversify and broaden the mathematical concepts and tools. In return, new mathematical approaches to modeling and analysis enlarge the scope and efficiency of applied research.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:

Electronic Access:
Click to View
Holds: Copies: