Cover image for The Finite Element Method for Solid and Structural Mechanics.
The Finite Element Method for Solid and Structural Mechanics.
Title:
The Finite Element Method for Solid and Structural Mechanics.
Author:
Zienkiewicz, Olek C.
ISBN:
9780080951362
Personal Author:
Edition:
7th ed.
Physical Description:
1 online resource (657 pages)
Contents:
Half Title -- Author Biography -- Title Page -- Copyright -- Dedication -- Contents -- List of Figures -- List of Tables -- Preface -- 1 General Problems in Solid Mechanics and Nonlinearity -- 1.1 Introduction -- 1.2 Small deformation solid mechanics problems -- 1.2.1 Strong form of equation: Indicial notation -- 1.2.1.1 Coordinates and displacements -- 1.2.1.2 Strain-displacement relations -- 1.2.1.3 Equilibrium equations: Balance of momentum -- 1.2.1.4 Boundary conditions -- 1.2.1.5 Initial conditions -- 1.2.1.6 Constitutive relations -- 1.2.2 Matrix notation -- 1.2.3 Two-dimensional problems -- 1.2.3.1 Plane stress and plane strain -- 1.2.3.2 Axisymmetric problems -- 1.3 Variational forms for nonlinear elasticity -- 1.4 Weak forms of governing equations -- 1.4.1 Weak form for equilibrium equation -- 1.5 Concluding remarks -- References -- 2 Galerkin Method of Approximation: Irreducible and Mixed Forms -- 2.1 Introduction -- 2.2 Finite element approximation: Galerkin method -- 2.2.1 Displacement approximation -- 2.2.2 Derivatives -- 2.2.3 Strain-displacement equations -- 2.2.4 Weak form -- 2.2.5 Irreducible displacement method -- 2.3 Numerical integration: Quadrature -- 2.3.1 Volume integrals -- 2.3.2 Surface integrals -- 2.4 Nonlinear transient and steady-state problems -- 2.4.1 Explicit Newmark method -- 2.4.2 Implicit Newmark method -- 2.4.3 Generalized midpoint implicit form -- 2.5 Boundary conditions: Nonlinear problems -- 2.5.1 Displacement condition -- 2.5.1.1 Nonlinear explicit problems -- 2.5.1.2 Nonlinear implicit problems -- 2.5.2 Traction condition -- 2.5.2.1 Pressure loading -- 2.5.3 Mixed displacement/traction condition -- 2.6 Mixed or irreducible forms -- 2.6.1 Deviatoric and mean stress and strain components -- 2.6.2 A three-field mixed method for general constitutive models -- 2.6.3 Local approximation of p and.

2.6.4 Continuous u-p approximation -- 2.7 Nonlinear quasi-harmonic field problems -- 2.8 Typical examples of transient nonlinear calculations -- 2.8.1 Transient heat conduction -- 2.8.2 Structural dynamics -- 2.8.3 Earthquake response of soil structures -- 2.9 Concluding remarks -- References -- 3 Solution of Nonlinear Algebraic Equations -- 3.1 Introduction -- 3.2 Iterative techniques -- 3.2.1 General remarks -- 3.2.2 Newton's method -- 3.2.3 Modified Newton's method -- 3.2.4 Incremental-secant or quasi-Newton methods -- 3.2.5 Line search procedures: Acceleration of convergence -- 3.2.6 ``Softening'' behavior and displacement control -- 3.2.7 Convergence criteria -- 3.3 General remarks: Incremental and rate methods -- References -- 4 Inelastic and Nonlinear Materials -- 4.1 Introduction -- 4.2 Tensor to matrix representation -- 4.3 Viscoelasticity: History dependence of deformation -- 4.3.1 Linear models for viscoelasticity -- 4.3.2 Isotropic models -- 4.3.2.1 Differential equation model -- 4.3.2.2 Integral equation model -- 4.3.2.3 Solution to integral equation with Prony series -- 4.3.3 Solution by analogies -- 4.4 Classical time-independent plasticity theory -- 4.4.1 Yield functions -- 4.4.2 Flow rule (normality principle) -- 4.4.3 Hardening/softening rules -- 4.4.3.1 Isotropic hardening -- 4.4.3.2 Kinematic hardening -- 4.4.4 Plastic stress-strain relations -- 4.5 Computation of stress increments -- 4.5.1 Explicit methods -- 4.5.2 Implicit methods: Return map algorithm -- 4.5.2.1 Return map algorithm -- 4.6 Isotropic plasticity models -- 4.6.1 Isotropic yield surfaces -- 4.6.2 J2 model with isotropic and kinematic hardening (Prandtl-Reuss equations) -- 4.6.2.1 Continuum rate form -- 4.6.2.2 Incremental return map form -- 4.6.3 Plane stress -- 4.7 Generalized plasticity -- 4.7.1 Nonassociative case: Frictional materials.

4.7.2 Associative case: J2 generalized plasticity -- 4.8 Some examples of plastic computation -- 4.8.1 Perforated plate: Plane stress solutions -- 4.8.2 Perforated plate: Plane strain solutions -- 4.8.3 Steel pressure vessel -- 4.9 Basic formulation of creep problems -- 4.9.1 Fully explicit solutions -- 4.9.1.1 ``Initial strain'' procedure: γ= 0 -- 4.9.1.2 Fully explicit process with modified stiffness: -- 4.10 Viscoplasticity: A generalization -- 4.10.1 General remarks -- 4.10.2 Implicit solution -- 4.10.3 Creep of metals -- 4.10.4 Soil mechanics applications -- 4.11 Some special problems of brittle materials -- 4.11.1 The no-tension material -- 4.11.1.1 An underground power station -- 4.11.1.2 Reinforced concrete -- 4.11.2 ``Laminar'' material and joint elements -- 4.12 Nonuniqueness and localization in elasto-plastic -- 4.13 Nonlinear quasi-harmonic field problems -- 4.14 Concluding remarks -- References -- 5 Geometrically Nonlinear Problems: Finite Deformation -- 5.1 Introduction -- 5.2 Governing equations -- 5.2.1 Kinematics and deformation -- 5.2.2 Stress and traction for reference and deformed states -- 5.2.2.1 Stress measures -- 5.2.2.2 Traction measures -- 5.2.3 Equilibrium equations -- 5.2.4 Boundary conditions -- 5.2.5 Initial conditions -- 5.2.6 Constitutive equations: Hyperelastic material -- 5.3 Variational description for finite deformation -- 5.3.1 Reference configuration formulation -- 5.3.1.1 Matrix form -- 5.3.1.2 Finite element approximation -- 5.3.1.3 Transient problems -- 5.3.2 First Piola-Kirchhoff formulation -- 5.3.3 Current configuration formulation -- 5.3.3.1 Finite element formulation -- 5.4 Two-dimensional forms -- 5.4.1 Plane strain -- 5.4.2 Plane stress -- 5.4.3 Axisymmetric with torsion -- 5.5 A three-field, mixed finite deformation formulation -- 5.5.1 Finite element equations: Matrix notation.

5.6 Forces dependent on deformation: Pressure loads -- 5.7 Concluding remarks -- References -- 6 Material Constitution for Finite Deformation -- 6.1 Introduction -- 6.2 Isotropic elasticity -- 6.2.1 Isotropic elasticity: Formulation in invariants -- 6.2.2 Isotropic elasticity: Formulation in modified invariants -- 6.2.3 Isotropic elasticity: Formulation in principal stretches -- 6.2.4 Plane stress applications -- 6.3 Isotropic viscoelasticity -- 6.4 Plasticity models -- 6.5 Incremental formulations -- 6.6 Rate constitutive models -- 6.7 Numerical examples -- 6.7.1 Necking of circular bar -- 6.7.2 Adaptive refinement and localization (slip-line) capture -- 6.7.2.1 Adaptive refinement based on energy norm error estimates -- 6.7.2.2 Alternate refinement using error indicators: Discontinuity capture -- 6.8 Concluding remarks -- References -- 7 Material Constitution Using Representative Volume Elements -- 7.1 Introduction -- 7.2 Coupling between scales -- 7.2.1 RVE with specified boundary displacements -- 7.2.1.1 Stress computation -- 7.2.1.2 Tangent computation -- 7.2.2 Kirchhoff and Cauchy stress forms -- 7.2.2.1 Stress computation -- 7.2.2.2 Tangent computation -- 7.2.3 Periodic boundary conditions -- 7.2.3.1 Stress computation -- 7.2.3.2 Tangent computation -- 7.2.4 Small strains -- 7.3 Quasi-harmonic problems -- 7.4 Numerical examples -- 7.4.1 Linear elastic properties -- 7.4.2 Uniformly loaded plate: Cylindrical bending -- 7.4.3 Moment-curvature: Elastic-plastic response -- 7.5 Concluding remarks -- References -- 8 Treatment of Constraints: Contact and Tied Interfaces -- 8.1 Introduction -- 8.2 Node-node contact: Hertzian contact -- 8.2.1 Geometric modeling -- 8.2.2 Contact models -- 8.2.2.1 Lagrange multiplier form -- 8.2.2.2 Perturbed Lagrangian -- 8.2.2.3 Penalty function form -- 8.2.2.4 Augmented Lagrangian form -- 8.3 Tied interfaces.

8.3.1 Surface-surface tied interface -- 8.4 Node-surface contact -- 8.4.1 Geometric modeling -- 8.4.1.1 Normal and tangent vector definitions -- 8.4.2 Contact modeling: Frictionless case -- 8.4.2.1 Contact residual -- 8.4.2.2 Contact tangent -- 8.4.3 Contact modeling: Frictional case -- 8.4.3.1 Residual and tangent -- 8.5 Surface-surface contact -- 8.5.1 Frictionless case -- 8.6 Numerical examples -- 8.6.1 Contact between two disks -- 8.6.2 Contact between a disk and a block -- 8.6.3 Frictional sliding of a flexible disk on a sloping block -- 8.6.4 Upsetting of a cylindrical billet -- 8.7 Concluding remarks -- References -- 9 Pseudo-Rigid and Rigid-Flexible Bodies -- 9.1 Introduction -- 9.2 Pseudo-rigid motions -- 9.3 Rigid motions -- 9.3.1 Equations of motion for a rigid body -- 9.3.2 Construction from a finite element model -- 9.3.3 Transient solutions -- 9.4 Connecting a rigid body to a flexible body -- 9.4.1 Lagrange multiplier constraints -- 9.5 Multibody coupling by joints -- 9.5.1 Translation constraints -- 9.5.2 Rotation constraints -- 9.5.3 Library of joints -- 9.6 Numerical examples -- 9.6.1 Rotating disk -- 9.6.2 Beam with attached mass -- 9.6.3 Biofidelic rear impact dummy -- 9.6.4 Sorting of randomly sized particles -- 9.7 Concluding remarks -- References -- 10 Background Mathematics and Linear Shell Theory -- 10.1 Introduction -- 10.2 Basic notation and differential calculus -- 10.2.1 Calculus in several variables -- 10.2.1.1 Distance in Reals n -- 10.2.1.2 Open and closed sets -- 10.2.2 Differential calculus: Frechet derivative -- 10.2.2.1 Real-valued functions -- 10.2.2.2 The Frechet derivative: General case -- 10.2.2.3 Properties of the Frechet derivative -- 10.2.3 Tangent spaces and tangent maps -- 10.2.4 Parameterizations, curvilinear coordinates, and the Jacobian transformation.

10.2.4.1 The reference configuration of a continuum body in Reals 3.
Abstract:
The Finite Element Method for Solid and Structural Mechanics is the key text and reference for engineers, researchers and senior students dealing with the analysis and modeling of structures, from large civil engineering projects such as dams to aircraft structures and small engineered components. This edition brings a thorough update and rearrangement of the book's content, including new chapters on: Material constitution using representative volume elements Differential geometry and calculus on manifolds Background mathematics and linear shell theory Focusing on the core knowledge, mathematical and analytical tools needed for successful structural analysis and modeling, The Finite Element Method for Solid and Structural Mechanics is the authoritative resource of choice for graduate level students, researchers and professional engineers. A proven keystone reference in the library of any engineer needing to apply the finite element method to solid mechanics and structural design. Founded by an influential pioneer in the field and updated in this seventh edition by an author team incorporating academic authority and industrial simulation experience. Features new chapters on topics including material constitution using representative volume elements, as well as consolidated and expanded sections on rod and shell models.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: