Cover image for Soft Matter Nanotechnology : From Structure to Function.
Soft Matter Nanotechnology : From Structure to Function.
Title:
Soft Matter Nanotechnology : From Structure to Function.
Author:
Chen, Xiaodong.
ISBN:
9783527682140
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (457 pages)
Contents:
Soft Matter Nanotechnology: From Structure to Function -- Contents -- List of Contributors -- Preface -- 1. Chemical Reactions for the Synthesis of Organic Nanomaterials on Surfaces -- 1.1 Introduction -- 1.1.1 Ullmann Coupling -- 1.1.2 Condensation Reactions -- 1.2 Alkane Polymerization -- 1.3 Azide-Alkyne Cycloaddition -- 1.4 Glaser Coupling -- 1.5 Decarboxylative Polymerization of Acids -- 1.6 Conclusions -- Acknowledgments -- References -- 2. Self-Assembly of Organic Molecules into Nanostructures -- 2.1 Introduction -- 2.2 Classification of Nanostructures -- 2.3 General Self-Assembly Method for the Construction of Nanostructures -- 2.3.1 Reprecipitation -- 2.3.2 Gelation -- 2.3.3 Langmuir-Blodgett Technique -- 2.3.4 Layer-by-Layer Assembly -- 2.3.5 Self-Assembly in Solution -- 2.4 Molecular Design and Building Blocks -- 2.4.1 Amphiphiles -- 2.4.1.1 Typical Amphiphiles -- 2.4.1.2 Bolaamphiphiles -- 2.4.1.3 Gemini Amphiphiles -- 2.4.1.4 Triangular Amphiphiles -- 2.4.1.5 Supra-amphiphiles -- 2.4.2 Gelators -- 2.4.2.1 Cholesterol-Based Gelators -- 2.4.2.2 Alkane- and Fatty Acid-Based Gelators -- 2.4.2.3 Nucleoside-Based Gelators -- 2.4.2.4 Amino Acid- and Peptide-Based Gelators -- 2.4.2.5 Carbohydrate-Based Gelators -- 2.4.3 π-Functionalized System -- 2.4.3.1 Porphyrin -- 2.4.3.2 Molecular Graphene -- 2.4.3.3 π-Conjugated Gelators -- 2.4.4 Dendrimers -- 2.5 Functions of Some Typical Nanostructures -- 2.5.1 Vesicles/Hollow Spheres -- 2.5.2 Nanotubes -- 2.5.2.1 Self-Assembled Lipid Nanotubes -- 2.5.2.2 Self-Assembled Peptide Nanotubes -- 2.5.2.3 Functionalization of Nanotubes -- 2.5.3 Nanofibers -- 2.6 Conclusions and Outlook -- References -- 3. Supramolecular Nanotechnology: Soft Assembly of Hard Nanomaterials -- 3.1 Introduction -- 3.2 Soft Cell-Like Structures with Hard Nanomaterials -- 3.2.1 Cerasome: Inorganic Surface Cell.

3.2.2 Flake-Shell Capsule -- 3.2.3 Metallic Cells -- 3.3 For Hierarchical Assembly: LbL and Others -- 3.3.1 Mesoporous Carbon in Hierarchical Assembly -- 3.3.2 Mesoporous Carbon Capsule in Layer-by-Layer Film -- 3.3.3 Layer-by-Layer Assembly of Graphene and Ionic Liquids -- 3.3.4 LbL Films of Mesoporous Silica Capsule for Controlled Release -- 3.4 Summary -- Acknowledgments -- References -- 4. Nanoparticles: Important Tools to Overcome the Blood-Brain Barrier and Their Use for Brain Imaging -- 4.1 Introduction -- 4.2 Physiology of the Blood-Brain Barrier -- 4.2.1 The Endothelial Blood-Brain Barrier -- 4.2.2 The Blood-CSF Barrier -- 4.2.3 Regulation of the Barrier Tightness -- 4.2.4 Transport Routes and Drug Permeability across the Blood-Brain Barrier -- 4.2.5 In vitro Models of the BBB and Blood-CSF Barrier -- 4.3 Definition and Type of Nanoparticles and Nanocarriers for Brain Uptake -- 4.3.1 Organic Nanoparticles -- 4.3.1.1 Polymeric Nanoparticles -- 4.3.1.2 Liposomes and Lipidic Nanoparticles -- 4.3.1.3 Nanomeric Emulsions, Micelles, and Nanogels -- 4.3.1.4 Carbohydrates -- 4.3.2 Inorganic Nanoparticles -- 4.3.2.1 Magnetic Nanoparticles -- 4.3.2.2 Semiconductor Nanoparticles -- 4.3.2.3 Gold Nanoparticles -- 4.3.3 Surface Functionalization of Nanoparticles for BBB Transport -- 4.4 Nanoparticles and Imaging -- 4.4.1 Magnetic Resonance Imaging (MRI) -- 4.4.2 Optical Imaging -- 4.5 Conclusion and Outlook -- Acknowledgment -- References -- 5. Organic Nanophotonics: Controllable Assembly of Optofunctional Molecules toward Low-Dimensional Materials with Desired Photonic Properties -- 5.1 Introduction -- 5.2 From Molecules to Assembly -- 5.2.1 Inherent Intermolecular Interactions -- 5.2.2 Influences of External Factors -- 5.2.2.1 Solvent Effect in Assembly -- 5.2.2.2 Site-Selected Assembly on Specific Substrates -- 5.3 From Assembly to Structures.

5.3.1 Structure Control through Intermolecular Interactions -- 5.3.1.1 Controlling the Structures via Molecular Design -- 5.3.1.2 Structures Obtained from the Synergistic Assembly of Different Compounds -- 5.3.2 Structure Modulation through External Factors -- 5.3.2.1 Structures versus Aging Time -- 5.3.2.2 Heterostructures through Site-Specific Epitaxial Growth -- 5.4 From Structures to Photonic Properties -- 5.4.1 Nanowire Heterojunctions -- 5.4.1.1 Dendritic Heterostructures as Optical Routers -- 5.4.1.2 Nanowire p-n Junctions as Photoelectric Transducers -- 5.4.2 Doped Nanostructures -- 5.4.2.1 Uniformly Doped Structures -- 5.4.2.2 Gradiently Doped Structures -- 5.4.2.3 Core/Sheath Structures -- 5.5 Conclusions -- Acknowledgments -- References -- 6. Functional Lipid Assemblies by Dip-Pen Nanolithography and Polymer Pen Lithography -- 6.1 Introduction -- 6.2 Techniques and Methods -- 6.2.1 Dip-Pen Nanolithography -- 6.2.2 Polymer Pen Lithography -- 6.3 Ink Transfer Models -- 6.3.1 DPN of Liquid Inks -- 6.3.2 DPN of Diffusive Inks -- 6.3.3 DPN of Lipid Inks -- 6.3.4 Ink Transfer in PPL -- 6.4 Applications -- 6.4.1 Applications in Sensing -- 6.4.2 Biological Applications -- 6.5 Conclusions -- Acknowledgments -- References -- 7. PEG-Based Antigen-Presenting Cell Surrogates for Immunological Applications -- 7.1 Introduction -- 7.2 Elastic Nanopatterned and Specifically Biofunctionalized 2D PEG-DA Hydrogels: General Properties -- 7.2.1 Block Copolymer Micellar Nanolithography (BCML) -- 7.2.2 Fabrication and Characterization of Nanopatterned PEG-DA Hydrogels -- 7.2.3 Biofunctionalization -- 7.2.4 Cell Experiments -- 7.2.4.1 T-Cells Isolation -- 7.2.4.2 T-Cells Stimulation -- 7.2.4.3 T-Cells Proliferation -- 7.2.4.4 Results -- 7.3 Nanostructured PEG-DA Hydrogel Beads: General Properties -- 7.3.1 Surfactant Synthesis.

7.3.2 Fabrication of Nanostructured PEG-DA Hydrogel Beads by Droplet-Based Microfluidics -- 7.3.3 Characterization of Nanostructured PEG-DA Hydrogel Beads -- 7.3.4 Biofunctionalization -- 7.4 Nanostructured and Specifically Biofunctionalized Droplets of Water-in-Oil Emulsion: General Properties -- 7.4.1 Surfactant Synthesis -- 7.4.2 Droplet-Based Microfluidics -- 7.4.3 Characterization of the Gold Nanostructured Droplets of Water-in-Oil Emulsion -- 7.4.4 Biofunctionalization of the Nanostructured Droplets -- 7.4.5 Cell Experiments -- 7.4.5.1 Cell Culture -- 7.4.5.2 Cell Recovery and Live/Dead Staining -- 7.4.5.3 Results -- 7.5 Summary and Outlook for the Future -- Acknowledgments -- References -- 8. Soft Matter Assembly for Atomically Precise Fabrication of Solid Oxide -- 8.1 Introduction -- 8.2 The Ultimate Goal of Nanotechnology: Atomically Precise Fabrication -- 8.3 Soft Mater Assembly for Atomically Precise Oxide Layers -- 8.4 Soft Matter Assembly for Atomically Precise Oxide Dots -- 8.5 Summary for the Future Works -- References -- 9. Conductive Polymer Nanostructures -- 9.1 Introduction -- 9.2 Solution-Based Synthesis of Conducting Polymer Nanostructures -- 9.2.1 Soft Template Synthesis -- 9.2.2 Hard Template Method -- 9.3 Substrate-Based Fabrication of Conducting Polymer Nanostructures -- 9.3.1 Add to Surface -- 9.3.1.1 Direct Writing -- 9.3.1.2 In Situ Synthesis or Assembly -- 9.3.2 Remove from Surface -- 9.3.2.1 Nanoscratching -- 9.3.2.2 Etching -- 9.4 Electrospinning Technique of Conducting Polymer -- 9.5 Summary and Outlook -- References -- 10. DNA-Induced Nanoparticle Assembly -- 10.1 Introduction -- 10.2 DNA as a Template Material -- 10.2.1 On Modified Linear DNA Strands -- 10.2.2 On DNA Origami Structures -- 10.2.3 On Geometrically Tailored DNA -- 10.3 DNA as Ligand.

10.3.1 DNA Functionalization of Gold Nanoparticles and Network Formation -- 10.3.2 Extended Superstructures -- 10.3.3 Finite Size DNA-AuNP Assemblies -- 10.3.4 Aggregates Composed of Different Particle Geometries and Morphologies -- 10.4 Applications -- 10.5 Summary -- References -- 11. Nanostructured Substrates for Circulating Tumor Cell Capturing -- 11.1 Introduction -- 11.2 Nanostructured Substrates for CTC Capturing -- 11.2.1 Nanoparticles -- 11.2.2 Nanofractals -- 11.2.3 Nanowires -- 11.2.4 Nanoposts/pillars -- 11.2.5 Nanotubes -- 11.2.6 Nanofibers -- 11.2.7 Nanopores -- 11.3 Nanostructured Substrates for Other Cells Capturing -- 11.4 Conclusions and Perspectives -- References -- 12. Organic Nano Field-Effect Transistor -- 12.1 Introduction -- 12.2 The Fabrication of Organic Semiconductor Nanostructures -- 12.2.1 Vapor-Phase Method -- 12.2.2 Solution Process -- 12.2.3 Other Methods -- 12.3 Device Structures of Organic Nano Field-Effect Transistor -- 12.4 The Preparation of Organic Nano Field-Effect Transistor -- 12.4.1 The Transfer of Organic Nanocrystals -- 12.4.2 Electrode of Organic Semiconductor Nanocrystal Field-Effect Transistor -- 12.5 Properties of Organic Nanoscale Field-Effect Transistor -- 12.6 Application of Organic Nano-FETs -- 12.7 Summary and Outlook -- References -- 13. Advanced Dynamic Gels -- 13.1 Introduction -- 13.2 Gels in Nature -- 13.3 Characterization of VEGs -- 13.3.1 Rheometer -- 13.3.2 Small-Angle Scattering -- 13.3.3 Transmission Electron Microscopy -- 13.4 Redox-Responsive VEGs -- 13.5 pH-Responsive VEGs -- 13.6 Temperature-Responsive VEGs -- 13.7 Photoresponsive VEGs -- 13.8 Applications -- 13.9 Conclusions -- 13.10 Theory -- References -- 14. Micro/Nanocrystal Conversion beyond Inorganic Nanostructures -- 14.1 Introduction -- 14.2 Micro/Nanostructure Conversion through Charge Transfer Complex Formation.

14.3 Micro/Nanostructure Conversion through Ion and Ligand Exchange.
Abstract:
Using the well-honed tools of nanotechnology, this book presents breakthrough results in soft matter research, benefitting from the synergies between the chemistry, physics, biology, materials science, and engineering communities. The team of international authors delves beyond mere structure-making and places the emphasis firmly on imparting functionality to soft nanomaterials with a focus on devices and applications. Alongside reviewing the current level of knowledge, they also put forward novel ideas to foster research and development in such expanding fields as nanobiotechnology and nanomedicine. As such, the book covers DNA-induced nanoparticle assembly, nanostructured substrates for circulating tumor cell capturing, and organic nano field effect transistors, as well as advanced dynamic gels and self-healing electronic nanodevices. With its interdisciplinary approach this book gives readers a complete picture of nanotechnology with soft matter.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: