Cover image for Fluid Physics in Geology : An Introduction to Fluid Motions on Earth's Surface and within Its Crust.
Fluid Physics in Geology : An Introduction to Fluid Motions on Earth's Surface and within Its Crust.
Title:
Fluid Physics in Geology : An Introduction to Fluid Motions on Earth's Surface and within Its Crust.
Author:
Furbish, David Jon.
ISBN:
9780195360288
Personal Author:
Physical Description:
1 online resource (497 pages)
Contents:
Contents -- Preface -- Menu -- Acknowledgments -- 1. Introduction -- 1.1 Topics and Strategies in the Study of Fluid Physics -- 1.2 Units and Mathematical Conventions -- 1.3 Scope of Mathematics Used in This Text -- 1.3.1 Analytical solutions, vectors, and tensors -- 1.3.2 Partial differential notation -- 1.4 Example Problems -- 1.4.1 Steady one-dimensional heat and water flows: a structural homology -- 1.4.2 Sediment particles, vesicles, and olivine crystals: a case of geometric similitude -- 1.4.3 Series, averages, covariances, and autocovariances of physical quantities -- 1.5 Reading -- 2. Fluids and Porous Media as Continua -- 2.1 Mean Free Path -- 2.2 Mathematical and Physical Points -- 2.3 Representative Elementary Volume -- 2.4 Example Problems -- 2.4.1 Shear of thin liquid films: behavior below the continuum scale -- 2.4.2 Fractal pore geometry -- 2.4.3 Porosity estimates of regularly and randomly packed particles -- 2.4.4 Covariance of porosity -- 2.5 Reading -- 3. Mechanical Properties of Fluids and Porous Media -- 3.1 Body and Surface Forces -- 3.2 Ideal versus Real Fluids -- 3.3 Density -- 3.3.1 Fluids -- 3.3.2 Porous media -- 3.4 Fluid Rheology and Shear Viscosity -- 3.4.1 Newtonian fluids -- 3.4.2 Non-Newtonian fluids -- 3.5 Compressibility -- 3.5.1 Fluids -- 3.5.2 Porous media -- 3.6 Surface Tension -- 3.6.1 Surface tension as a potential energy -- 3.6.2 Bubble pressure and capillarity -- 3.7 Example Problems -- 3.7.1 Velocity distributions in viscous fluids: Couette, conduit, and free-surface flows -- 3.7.2 Free-surface flow of a Bingham plastic: nonturbulent lava streams and debris flows -- 3.7.3 Surface tension in unsaturated flow: bubbling pressure -- 3.8 Reading -- 4. Thermodynamic Properties of Fluids -- 4.1 Specific Heat -- 4.2 Heat Conduction -- 4.3 Fluid Phases -- 4.4 Equations of State -- 4.4.1 Ideal gases.

4.4.2 Real gases -- 4.4.3 Liquids -- 4.5 Thermodynamic State and the First Law of Thermodynamics -- 4.6 Isobaric and Isothermal Processes -- 4.6.1 Specific heat of an ideal gas -- 4.6.2 Phase transitions -- 4.7 Adiabatic Processes -- 4.8 Compressibility and Thermal Expansion -- 4.9 Bulk Viscosity -- 4.10 Example Problems -- 4.10.1 Change in ice temperature with steady heat inflow -- 4.10.2 An empirical equation of state for water -- 4.10.3 Water loss from a geyser: thermal effects -- 4.10.4 Ice regelation and glacier movement -- 4.10.5 Growth of carbon dioxide bubbles in a liquid -- 4.11 Reading -- 5. Dimensional Analysis and Similitude -- 5.1 Dimensional Homogeneity -- 5.2 Dimensional Quantities -- 5.2.1 Viscosity of a gas -- 5.2.2 Average velocity in conduit flow -- 5.2.3 Drag on a spherical particle: the Reynolds number -- 5.3 Buckingham Pi Theorem -- 5.4 Geometrical Similitude -- 5.4.1 Exact -- 5.4.2 Statistical -- 5.5 Dynamical Similitude -- 5.6 Characteristic Dimensionless Quantities -- 5.7 Example Problems -- 5.7.1 Drag on a spherical particle using Buckingham Pi theorem -- 5.7.2 Drag on spinose foraminifera -- 5.7.3 Geometrical similitude of randomly packed, unconsolidated sand grains -- 5.8 Reading -- 6. Fluid Statics and Buoyancy -- 6.1 Static Pressure -- 6.2 Equation of Fluid Statics -- 6.3 Hydrostatic Equation -- 6.4 Hypsometric Equations -- 6.5 Buoyancy -- 6.6 Stability of a Thermally Stratified Fluid -- 6.6.1 Liquids -- 6.6.2 Gases -- 6.7 Example Problems -- 6.7.1 Buoyant force on a sediment particle: coordinate position of action -- 6.7.2 Buoyant ascent of magma within a vertical dike -- 6.7.3 Growth and ascent of carbon dioxide bubbles in a liquid -- 6.7.4 Advective overpressure within a magma chamber -- 6.8 Reading -- 7. Fluid Kinematics -- 7.1 Qualitative Descriptions of Motion -- 7.2 Substantive Derivative.

7.2.1 General expression -- 7.2.2 Convective accelerations -- 7.3 Example Problems -- 7.3.1 Local and convective temperature changes within a dike -- 7.3.2 Streamwise acceleration in a Venturi flow -- 7.4 Reading -- 8. Conservation of Mass -- 8.1 Continuity in Cartesian Coordinates -- 8.1.1 Purely fluid flow -- 8.1.2 Flow in porous media -- 8.2 Continuity of Solutes -- 8.2.1 Simple solvent-solute flow -- 8.2.2 Solutes in porous media flow -- 8.3 Continuity in Large Control Volumes -- 8.3.1 Saint-Venant equation of continuity -- 8.3.2 Dupuit flow -- 8.4 Example Problems -- 8.4.1 Steady conduit flow: inferences from continuity -- 8.4.2 Depth-integrated equation of continuity for open-channel flow -- 8.4.3 Continuity of radial flow at a well with steady pumping -- 8.4.4 Diffusion of carbon dioxide into a slowly ascending bubble -- 8.4.5 Lake mass balance -- 8.4.6 Flow within a two-dimensional fracture network -- 8.5 Reading -- 9. Conservation of Energy -- 9.1 Energy Equation -- 9.1.1 Conservation in absence of viscous dissipation -- 9.1.2 Mechanical energy and Euler's equation -- 9.1.3 Porous media -- 9.2 Hubbert's Potential -- 9.3 Example Problems -- 9.3.1 Velocity measurements in open channel flow using a meter stick -- 9.3.2 Heat flow within glacier ice -- 9.3.3 Solidification and melting along dikes with Newtonian magma flow -- 9.4 Reading -- 10. Inviscid Flows -- 10.1 Euler's Equations -- 10.2 Bernoulli's Equation -- 10.3 Example Problems -- 10.3.1 Pressure conditions in a Venturi flow -- 10.3.2 Near-vent velocity of a subsonic geyser eruption -- 10.3.3 Speed of shallow waves -- 10.4 Reading -- 11. Vorticity and Fluid Strain -- 11.1 Flow with Rotation -- 11.2 Vorticity -- 11.3 Fluid Strain -- 11.4 Example Problems -- 11.4.1 Local vorticity and grain rotation in a dike or sill.

11.4.2 Generation of vorticity in viscous boundary flow: precursor to turbulence -- 11.5 Reading -- 12. Viscous Flows -- 12.1 Viscous Forces -- 12.2 Newtonian Fluids -- 12.2.1 Constitutive equations -- 12.2.2 Navier-Stokes equations -- 12.2.3 Energy equation -- 12.3 Incompressible Newtonian Flows -- 12.4 Non-Newtonian Fluids: The Example of Glacier Ice -- 12.4.1 Constitutive equations -- 12.4.2 Equations of motion -- 12.4.3 Energy equation -- 12.5 Example Problems -- 12.5.1 Buoyant ascent of magma in a vertical dike -- 12.5.2 Steady free-surface flow down an inclined bed -- 12.5.3 Viscous generation of heat in the vertical dike problem -- 12.5.4 Extending and compressing glacier flow -- 12.5.5 Very viscous (Hele-Shaw) flow -- 12.5.6 Boundary-layer equations -- 12.5.7 Flow around a vortex in a liquid with free surface -- 12.6 Reading -- 13. Porous Media Flows -- 13.1 Hydraulic Conductivity and Darcy's Law -- 13.1.1 Saturated media -- 13.1.2 Unsaturated media -- 13.2 Equations of Motion -- 13.2.1 Saturated media -- 13.2.2 Unsaturated media: the Richards equation -- 13.3 Advection-Dispersion Equation -- 13.4 Energy Equation -- 13.5 Example Problems -- 13.5.1 Permeability and Hagen-Poiseuille flow -- 13.5.2 Propagation of pressure waves within a coastal aquifer -- 13.5.3 Excess-fluid pressure in thick sediments -- 13.5.4 Unsaturated flow as a diffusion phenomenon -- 13.5.5 Use of temperature and solute-concentration curves to estimate vertical flow within sediments -- 13.6 Reading -- 14. Turbulent Flows -- 14.1 Onset of Turbulence -- 14.2 Time-Averaged Velocities and Pressure -- 14.3 Reynolds Stresses -- 14.4 Time-Averaged Continuity and Navier-Stokes Equations -- 14.5 Fluctuating Velocity Components -- 14.6 Production and Dissipation of Turbulence Energy -- 14.7 Example Problems -- 14.7.1 A statistical measure of the scale of turbulence.

14.7.2 Turbulence kinetic energy in a boundary layer -- 14.8 Reading -- 15. Turbulent Boundary-Layer Shear Flows -- 15.1 Turbulent Boundary-Layer Development -- 15.2 Prandtl's Mixing-Length Hypothesis -- 15.3 Mixing-Length and Eddy Viscosity Distributions -- 15.4 Logarithmic Velocity Law -- 15.5 Turbulent Flow over Rough Boundaries -- 15.5.1 Nikuradse sand roughness -- 15.5.2 Natural roughness -- 15.6 Production and Dissipation of Turbulence Energy -- 15.7 Turbulent Flow and Darcy's Law -- 15.8 Example Problems -- 15.8.1 Turbulent magma flow in a dike -- 15.8.2 Turbulence field over two-dimensional dunes -- 15.8.3 Flow over a two-dimensional wavy bed -- 15.8.4 Similitude and the logarithmic velocity law -- 15.9 Reading -- 16. Thermally Driven Flows -- 16.1 Boussinesq Approximation -- 16.2 Dimensionless Quantities -- 16.3 Laboratory Experiments with Rayleigh-Bénard and Hele-Shaw Flows -- 16.4 Convection in Porous Media -- 16.5 Example Problems -- 16.5.1 The onset of Rayleigh-Bénard convection -- 16.5.2 Convection in a porous medium -- 16.6 Reading -- 17. Appendixes -- 17.1 Formulae in Vector Analysis -- 17.1.1 Basic definitions -- 17.1.2 Differential operations in Cartesian coordinates -- 17.2 Orthogonal Curvilinear Coordinates -- 17.2.1 Cylindrical coordinates -- 17.2.2 Spherical coordinates -- 17.2.3 Curvilinear coordinates -- 17.3 Notation -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Y -- Z.
Abstract:
Fluid Physics in Geology is aimed at geology students who are interested in understanding fluid behavior and motion in the context of a wide variety of geological problems, and who wish to pursue related work in fluid physics. The book provides an introductory treatment of the physical and dynamical behaviors of fluids by focusing first on how fluids behave in a general way, then looking more specifically at how they are involved in certain geological processes. The text is written so students may concentrate on the sections that are most relevant to their own needs. Helpful problems following each chapter illustrate applications of the material to realistic problems involving groundwater flows, magma dynamics, open-channel flows, and thermal convection. Fluid Physics in Geology is ideal for graduate courses in all areas of geology, including hydrology, geomorphology, sedimentology, and petrology.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: