Cover image for Color in Computer Vision : Fundamentals and Applications.
Color in Computer Vision : Fundamentals and Applications.
Title:
Color in Computer Vision : Fundamentals and Applications.
Author:
Gevers, Theo.
ISBN:
9781118350072
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (386 pages)
Series:
The Wiley-IS&T Series in Imaging Science and Technology ; v.23

The Wiley-IS&T Series in Imaging Science and Technology
Contents:
Color in Computer Vision -- Contents -- Preface -- 1 Introduction -- 1.1 From Fundamental to Applied -- 1.2 Part I: Color Fundamentals -- 1.3 Part II: Photometric Invariance -- 1.3.1 Invariance Based on Physical Properties -- 1.3.2 Invariance By Machine Learning -- 1.4 Part III: Color Constancy -- 1.5 Part IV: Color Feature Extraction -- 1.5.1 From Luminance to Color -- 1.5.2 Features, Descriptors, and Saliency -- 1.5.3 Segmentation -- 1.6 Part V: Applications -- 1.6.1 Retrieval and Visual Exploration -- 1.6.2 Color Naming -- 1.6.3 Multispectral Applications -- 1.7 Summary -- PART I Color Fundamentals -- 2 Color Vision -- 2.1 Introduction -- 2.2 Stages of Color Information Processing -- 2.2.1 Eye and Optics -- 2.2.2 Retina: Rods and Cones -- 2.2.3 Ganglion Cells and Receptive Fields -- 2.2.4 LGN and Visual Cortex -- 2.3 Chromatic Properties of the Visual System -- 2.3.1 Chromatic Adaptation -- 2.3.2 Human Color Constancy -- 2.3.3 Spatial Interactions -- 2.3.4 Chromatic Discrimination and Color Deficiency -- 2.4 Summary -- 3 Color Image Formation -- 3.1 Lambertian Reflection Model -- 3.2 Dichromatic Reflection Model -- 3.3 Kubelka-Munk Model -- 3.4 The Diagonal Model -- 3.5 Color Spaces -- 3.5.1 XYZ System -- 3.5.2 RGB System -- 3.5.3 Opponent Color Spaces -- 3.5.4 Perceptually Uniform Color Spaces -- 3.5.5 Intuitive Color Spaces -- 3.6 Summary -- PART II Photometric Invariance -- 4 Pixel-Based Photometric Invariance -- 4.1 Normalized Color Spaces -- 4.2 Opponent Color Spaces -- 4.3 The HSV Color Space -- 4.4 Composed Color Spaces -- 4.4.1 Body Reflectance Invariance -- 4.4.2 Body and Surface Reflectance Invariance -- 4.5 Noise Stability and Histogram Construction -- 4.5.1 Noise Propagation -- 4.5.2 Examples of Noise Propagation through Transformed Colors -- 4.5.3 Histogram Construction by Variable Kernel Density Estimation.

4.6 Application: Color-Based Object Recognition -- 4.6.1 Dataset and Performance Measure -- 4.6.2 Robustness Against Noise: Simulated Data -- 4.7 Summary -- 5 Photometric Invariance from Color Ratios -- 5.1 Illuminant Invariant Color Ratios -- 5.2 Illuminant Invariant Edge Detection -- 5.3 Blur-Robust and Color Constant Image Description -- 5.4 Application: Image Retrieval Based on Color Ratios -- 5.4.1 Robustness to Illuminant Color -- 5.4.2 Robustness to Gaussian Blur -- 5.4.3 Robustness to Real-World Blurring Effects -- 5.5 Summary -- 6 Derivative-Based Photometric Invariance -- 6.1 Full Photometric Invariants -- 6.1.1 The Gaussian Color Model -- 6.1.2 The Gaussian Color Model by an RGB Camera -- 6.1.3 Derivatives in the Gaussian Color Model -- 6.1.4 Differential Invariants for the Lambertian Reflection Model -- 6.1.5 Differential Invariants for the Dichromatic Reflection Model -- 6.1.6 Summary of Full Color Invariants -- 6.1.7 Geometrical Color Invariants in Two Dimensions -- 6.2 Quasi-Invariants -- 6.2.1 Edges in the Dichromatic Reflection Model -- 6.2.2 Photometric Variants and Quasi-Invariants -- 6.2.3 Relations of Quasi-Invariants with Full Invariants -- 6.2.4 Localization and Discriminative Power of Full and Quasi-Invariants -- 6.3 Summary -- 7 Photometric Invariance by Machine Learning -- 7.1 Learning from Diversified Ensembles -- 7.2 Temporal Ensemble Learning -- 7.3 Learning Color Invariants for Region Detection -- 7.4 Experiments -- 7.4.1 Error Measures -- 7.4.2 Skin Detection: Still Images -- 7.4.3 Road Detection in Video Sequences -- 7.5 Summary -- PART III Color Constancy -- 8 Illuminant Estimation and Chromatic Adaptation -- 8.1 Illuminant Estimation -- 8.2 Chromatic Adaptation -- 9 Color Constancy Using Low-level Features -- 9.1 General Gray-World -- 9.2 Gray-Edge -- 9.3 Physics-Based Methods -- 9.4 Summary.

10 Color Constancy Using Gamut-Based Methods -- 10.1 Gamut Mapping Using Derivative Structures -- 10.1.1 Diagonal-Offset Model -- 10.1.2 Gamut Mapping of Linear Combinations of Pixel Values -- 10.1.3 N-Jet Gamuts -- 10.2 Combination of Gamut Mapping Algorithms -- 10.2.1 Combining Feasible Sets -- 10.2.2 Combining Algorithm Outputs -- 10.3 Summary -- 11 Color Constancy Using Machine Learning -- 11.1 Probabilistic Approaches -- 11.2 Combination Using Output Statistics -- 11.3 Combination Using Natural Image Statistics -- 11.3.1 Spatial Image Structures -- 11.3.2 Algorithm Selection -- 11.4 Methods Using Semantic Information -- 11.4.1 Using Scene Categories -- 11.4.2 Using High-Level Visual Information -- 11.5 Summary -- 12 Evaluation of Color Constancy Methods -- 12.1 Data Sets -- 12.1.1 Hyperspectral Data -- 12.1.2 RGB Data -- 12.1.3 Summary -- 12.2 Performance Measures -- 12.2.1 Mathematical Distances -- 12.2.2 Perceptual Distances -- 12.2.3 Color Constancy Distances -- 12.2.4 Perceptual Analysis -- 12.3 Experiments -- 12.3.1 Comparing Algorithm Performance -- 12.3.2 Evaluation -- 12.4 Summary -- PART IV Color Feature Extraction -- 13 Color Feature Detection -- 13.1 The Color Tensor -- 13.1.1 Photometric Invariant Derivatives -- 13.1.2 Invariance to Color Coordinate Transformations -- 13.1.3 Robust Full Photometric Invariance -- 13.1.4 Color-Tensor-Based Features -- 13.1.5 Experiment: Robust Feature Point Detection and Extraction -- 13.2 Color Saliency -- 13.2.1 Color Distinctiveness -- 13.2.2 Physics-Based Decorrelation -- 13.2.3 Statistics of Color Images -- 13.2.4 Boosting Color Saliency -- 13.2.5 Evaluation of Color Distinctiveness -- 13.2.6 Repeatability -- 13.2.7 Illustrations of Generality -- 13.3 Conclusions -- 14 Color Feature Description -- 14.1 Gaussian Derivative-Based Descriptors -- 14.2 Discriminative Power -- 14.3 Level of Invariance.

14.4 Information Content -- 14.4.1 Experimental Results -- 14.5 Summary -- 15 Color Image Segmentation -- 15.1 Color Gabor Filtering -- 15.2 Invariant Gabor Filters Under Lambertian Reflection -- 15.3 Color-Based Texture Segmentation -- 15.4 Material Recognition Using Invariant Anisotropic Filtering -- 15.4.1 MR8-NC Filterbank -- 15.4.2 MR8-INC Filterbank -- 15.4.3 MR8-LINC Filterbank -- 15.4.4 MR8-SLINC Filterbank -- 15.4.5 Summary of Filterbank Properties -- 15.5 Color Invariant Codebooks and Material-Specific Adaptation -- 15.6 Experiments -- 15.6.1 Material Classification by Color Invariant Codebooks -- 15.6.2 Color-Texture Segmentation of Material Images -- 15.6.3 Material Classification by Adaptive Color Invariant Codebooks -- 15.7 Image Segmentation by Delaunay Triangulation -- 15.7.1 Homogeneity Based on Photometric Color Invariance -- 15.7.2 Homogeneity Based on a Similarity Predicate -- 15.7.3 Difference Measure -- 15.7.4 Segmentation Results -- 15.8 Summary -- PART V Applications -- 16 Object and Scene Recognition -- 16.1 Diagonal Model -- 16.2 Color SIFT Descriptors -- 16.3 Object and Scene Recognition -- 16.3.1 Feature Extraction Pipelines -- 16.3.2 Classification -- 16.3.3 Image Benchmark: PASCAL Visual Object Classes Challenge -- 16.3.4 Video Benchmark: Mediamill Challenge -- 16.3.5 Evaluation Criteria -- 16.4 Results -- 16.4.1 Image Benchmark: PASCAL VOC Challenge -- 16.4.2 Video Benchmark: Mediamill Challenge -- 16.4.3 Comparison -- 16.5 Summary -- 17 Color Naming -- 17.1 Basic Color Terms -- 17.2 Color Names from Calibrated Data -- 17.2.1 Fuzzy Color Naming -- 17.2.2 Chromatic Categories -- 17.2.3 Achromatic Categories -- 17.2.4 Fuzzy Sets Estimation -- 17.3 Color Names from Uncalibrated Data -- 17.3.1 Color Name Data Sets -- 17.3.2 Learning Color Names -- 17.3.3 Assigning Color Names in Test Images.

17.3.4 Flexibility Color Name Data Set -- 17.4 Experimental Results -- 17.5 Conclusions -- 18 Segmentation of Multispectral Images -- 18.1 Reflection and Camera Models -- 18.1.1 Multispectral Imaging -- 18.1.2 Camera and Image Formation Models -- 18.1.3 White Balancing -- 18.2 Photometric Invariant Distance Measures -- 18.2.1 Distance between Chromaticity Polar Angles -- 18.2.2 Distance between Hue Polar Angles -- 18.2.3 Discussion -- 18.3 Error Propagation -- 18.3.1 Propagation of Uncertainties due to Photon Noise -- 18.3.2 Propagation of Uncertainty -- 18.4 Photometric Invariant Region Detection by Clustering -- 18.4.1 Robust K-Means Clustering -- 18.4.2 Photometric Invariant Segmentation -- 18.5 Experiments -- 18.5.1 Propagation of Uncertainties in Transformed Spectra -- 18.5.2 Photometric Invariant Clustering -- 18.6 Summary -- Citation Guidelines -- References -- Index.
Abstract:
While the field of computer vision drives many of today's digital technologies and communication networks, the topic of color has emerged only recently in most computer vision applications. One of the most extensive works to date on color in computer vision, this book provides a complete set of tools for working with color in the field of image understanding. Based on the authors' intense collaboration for more than a decade and drawing on the latest thinking in the field of computer science, the book integrates topics from color science and computer vision, clearly linking theories, techniques, machine learning, and applications. The fundamental basics, sample applications, and downloadable versions of the software and data sets are also included. Clear, thorough, and practical, Color in Computer Vision explains: Computer vision, including color-driven algorithms and quantitative results of various state-of-the-art methods Color science topics such as color systems, color reflection mechanisms, color invariance, and color constancy Digital image processing, including edge detection, feature extraction, image segmentation, and image transformations Signal processing techniques for the development of both image processing and machine learning Robotics and artificial intelligence, including such topics as supervised learning and classifiers for object and scene categorization Researchers and professionals in computer science, computer vision, color science, electrical engineering, and signal processing will learn how to implement color in computer vision applications and gain insight into future developments in this dynamic and expanding field.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: