Cover image for CVD Polymers : Fabrication of Organic Surfaces and Devices.
CVD Polymers : Fabrication of Organic Surfaces and Devices.
Title:
CVD Polymers : Fabrication of Organic Surfaces and Devices.
Author:
Gleason, Karen.
ISBN:
9783527690268
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (484 pages)
Contents:
Cover -- Contents -- List of Contributors -- Chapter 1 Overview of Chemically Vapor Deposited (CVD) Polymers -- 1.1 Motivation and Characteristics -- 1.1.1 Quality -- 1.1.2 Conformality -- 1.1.3 Durability -- 1.1.4 Composition -- 1.2 Fundamentals and Mechanisms -- 1.2.1 Gas Phase and Surface Reactions -- 1.2.2 The Monomer Saturation Ratio -- 1.2.3 Process Simplification and Substrate Independence -- 1.3 Scale-Up and Commercialization -- 1.4 Process and Materials Chemistry -- 1.4.1 Initiated CVD (iCVD) and Its Variants -- 1.4.2 Plasma Enhanced CVD (PECVD) -- 1.4.3 Poly(p-xylylene) (PPX) and Its Derivatives ("Parylenes") -- 1.4.4 Oxidative CVD (oCVD) -- 1.4.5 Vapor Deposition Polymerization (VDP) and Molecular Layer Deposition (MLD) -- 1.4.6 Additional Methods -- 1.5 Summary -- Acknowledgments -- References -- Part I: Fundamentals -- Chapter 2 Growth Mechanism, Kinetics, and Molecular Weight -- 2.1 Introduction -- 2.2 iCVD Process -- 2.3 Kinetics and Growth Mechanism -- 2.3.1 Fluorocarbon Polymers -- 2.3.2 Organosilicon Polymers -- 2.3.3 Acrylate and Methacrylate Polymers -- 2.3.4 Styrene and Other Vinyl Polymers -- 2.3.5 Ring Opening Polymers -- 2.4 Summary -- References -- Chapter 3 Copolymerization and Crosslinking -- 3.1 Introduction -- 3.2 Copolymer Composition and Structure -- 3.2.1 Confirmation of iCVD Copolymerization -- 3.2.2 Analysis of Copolymer Composition -- 3.2.3 Compositional Gradient -- 3.3 Copolymerization Kinetics -- 3.3.1 Copolymerization Equation and Reactivity Ratio -- 3.3.2 Types of iCVD Copolymerization -- 3.4 Tunable Properties of iCVD Copolymers -- 3.4.1 Mechanical Properties -- 3.4.2 Swelling -- 3.4.3 Thermal Properties -- 3.4.4 Surface Properties -- 3.5 Conclusions -- References -- Chapter 4 Non-Thermal Initiation Strategies and Grafting -- 4.1 Introduction -- 4.2 Initiation Strategies.

4.2.1 Plasma Initiation Strategies -- 4.2.1.1 Plasma Enhanced Chemical Vapor Deposition (PECVD) -- 4.2.1.2 Pulsed-Plasma Enhanced Chemical Vapor Deposition (PPECVD) -- 4.2.1.3 Microwave Plasmas -- 4.2.1.4 Initiated Plasma Enhanced Chemical Vapor Deposition (iPECVD) -- 4.2.1.5 Plasma Initiation Summary -- 4.2.2 Photoinitiation Strategies -- 4.2.2.1 Photoactive Initiator Molecules -- 4.2.2.2 Photoactive Monomer Species -- 4.2.2.3 Photoinitiation Summary -- 4.3 Grafting -- 4.3.1 Surface Modification of Organic Substrates -- 4.3.2 Surface Modification of Inorganic Substrates -- 4.3.3 Grafting Summary -- 4.4 Summary -- References -- Chapter 5 Conformal Polymer CVD -- 5.1 Introduction -- 5.2 Vapor Phase Transport -- 5.3 Conformal Polymer Coating Applications -- 5.4 Conformal Polymer Coating Technologies -- 5.5 Gas and Surface Reactions -- 5.6 The Reaction-Diffusion Model -- 5.6.1 Reaction and Diffusion in a Pore -- 5.6.2 Initiator Controlled Consumption -- 5.6.3 Factors Affecting the Initiator Sticking Probability -- 5.6.4 Monomer Controlled Consumption -- 5.6.5 Other Polymer CVD Systems -- 5.7 Applications -- 5.8 Conclusion -- Acknowledgment -- References -- Chapter 6 Plasma Enhanced-Chemical Vapor Deposited Polymers: Plasma Phase Reactions, Plasma-Surface Interactions, and Film Properties -- 6.1 Introduction: Chemical Vapor Deposition Methods, Advantages, and Challenges -- 6.2 Plasma Parameters, Plasma Phase Reactions, and the Role of Diagnostics -- 6.3 Plasma Polymerization: Is It Just Chemistry? The Role of Ions in Film Growth -- 6.4 Considerations on the Macroscopic Kinetics Approach to Plasma Polymerization -- 6.5 Polymer Film Characteristics -- 6.5.1 Plasma Polymer Chemistry: From Precursor Fragmentation to Retention -- 6.5.2 Densification of the Film Micro-structure -- 6.5.3 Plasma Polymer Topography -- Acknowledgments.

References -- Chapter 7 Fabrication of Organic Interfacial Layers by Molecular Layer Deposition: Present Status and Future Opportunities -- 7.1 Introduction -- 7.2 MLD Coupling Chemistry -- 7.2.1 Pure Organic MLD -- 7.2.1.1 Polyamide -- 7.2.1.2 Polyimide -- 7.2.1.3 Polyurea -- 7.2.1.4 Polythiourea -- 7.2.1.5 Polyurethane -- 7.2.1.6 Polyazomethine -- 7.2.1.7 Polyester -- 7.2.2 Organic-Inorganic Hybrid MLD -- 7.2.2.1 Organic-Inorganic Hybrid MLD with Homo-Bifunctional Precursors -- 7.2.2.2 Organic-Inorganic Hybrid MLD with Hetero-Bifunctional Precursors -- 7.3 Applications of MLD Films -- 7.3.1 Applications of Pure Organic MLD Films -- 7.3.1.1 Organic Quantum Dots with Tunable Sizes and Bandgaps -- 7.3.1.2 Organic Films as Copper Diffusion Barrier -- 7.3.1.3 Organic Polyurea MLD Film as Photoresist -- 7.3.1.4 Organic Polyimide MLD Film with Switchable Conductivity -- 7.3.2 Applications of Organic-Inorganic Hybrid MLD Films -- 7.3.2.1 Zeolite Modification Using Aluminum Alkoxide MLD Films -- 7.3.2.2 Polymer Modification Using Aluminum Alkoxide MLD Films -- 7.3.2.3 Encapsulation of Cu Nanoparticles Using Aluminum Alkoxide MLD Films -- 7.3.2.4 Photocatalytic Layers Using Titanium Alkoxide MLD Films -- 7.3.2.5 Organic Magnetic Materials Using Vanadium-Tetracyanoethylene Films -- 7.3.2.6 Electronic Device Applications -- 7.4 Study of MLD Film Structure -- 7.5 Challenges and Opportunities for MLD -- 7.6 Conclusions -- Acknowledgments -- References -- Part II: Materials Chemistry -- Chapter 8 Reactive and Stimuli-Responsive Polymer Thin Films -- 8.1 Introduction -- 8.2 Reactive Polymer Thin Films -- 8.2.1 Motivation -- 8.2.2 Examples of Functionalization Reactions -- 8.2.3 Important CVD Capabilities -- 8.2.4 Applications of Reactive Films -- 8.2.4.1 Bioconjugation -- 8.2.4.2 Nonfouling Surface -- 8.2.4.3 Sensors.

8.2.4.4 Adhesive Bonding of Microfluidics -- 8.3 Responsive Polymer Thin Films -- 8.3.1 Chemical-Responsive Polymers -- 8.3.2 pH Responsive Polymers -- 8.3.3 Temperature-Responsive Polymers -- 8.3.4 Piezoelectric Polymers -- 8.4 Conclusions -- References -- Chapter 9 Multifunctional Reactive Polymer Coatings -- 9.1 Introduction -- 9.2 CVD Copolymer Coatings with Randomly Distributed Functional Groups -- 9.3 Multifunctional Gradient Coatings -- 9.3.1 Composition Gradient Preparation and Biomedical Applications -- 9.3.2 Formation of Steep Surface Gradient -- 9.4 Functional Coatings with Micro- and Nanopatterns -- 9.4.1 Microcontact Printing (μCP) -- 9.4.2 Photopatterning -- 9.4.3 Vapor-Assisted Patterning During CVD -- 9.4.4 Nanopatterning by Dip-Pen Lithography (DPN) -- 9.5 Summary and Future Outlook -- Acknowledgments -- References -- Chapter 10 CVD Fluoropolymers -- 10.1 Introduction -- 10.2 Polytetrafluoroethylene (PTFE) -- 10.3 Poly(vinylidene fluoride) (PVDF) -- 10.4 Poly(1H,1H,2H,2H-perfluorodecyl acrylate) [p(PFDA)] -- 10.5 Copolymerization of Fluorinated Monomers -- 10.5.1 Copolymers with 1H,1H,2H,2H-perfluorodecyl acrylate (PFDA) -- 10.5.2 Copolymers with Organosilicons -- 10.6 Summary -- References -- Chapter 11 Conjugated CVD Polymers: Conductors and Semiconductors -- 11.1 Overview -- 11.2 Reactors and Process -- 11.3 Chemistry and Mechanism -- 11.3.1 Monomers -- 11.3.2 Oxidants and Dopants -- 11.4 Grafting and Patterning -- 11.5 Conformality -- 11.6 Dopants, Rinsing, Stability -- 11.7 Semiconductors -- 11.8 Electrical Properties -- 11.9 Functional oCVD Copolymers -- 11.10 Concluding Remarks -- References -- Part III: Applications -- Chapter 12 Controlling Wetting with Oblique Angle Vapor-Deposited Parylene -- 12.1 Introduction -- 12.2 Definition of Anisotropy in Materials Science.

12.3 OAP Surfaces: Fabrication -- 12.4 Directional OAP Surfaces: Form and Function -- 12.5 Modeling Adhesion, Wetting, and Transport on Directional Surfaces -- 12.5.1 Modeling Dry Adhesion -- 12.5.2 Modeling Wetting, Adhesion, and Transport in Solid-Fluid Systems -- 12.5.2.1 Analytic Models of Contact Angle Hysteresis -- 12.5.2.2 Analytic Models of Drop Transport on Textured Surfaces -- 12.5.2.3 Finite Element Models of Static Drops on Textured Surfaces -- 12.5.2.4 Full Numerical Simulation of Fluid Flow and Free Surface on Directional Surfaces -- 12.6 Conclusions -- Acknowledgments -- References -- Chapter 13 Membrane Modification by CVD Polymers -- 13.1 Modification of Membrane Surface and Internal Pores -- 13.1.1 Conformal Coatings for Membrane Surface Modification -- 13.1.2 Nonconformal Coatings for Membrane Surface Modification -- 13.2 Membrane Surface Energy Control Via Thin-Film Coatings -- 13.2.1 Hydrophobic Thin-Film Coatings for Membranes -- 13.2.2 Hydrophilic Thin-Film Coatings for Membranes -- 13.3 Antifouling and Antimicrobial Coatings for Membranes -- 13.4 Membrane Modification for Sustainability -- References -- Chapter 14 CVD Polymer Surfaces for Biotechnology and Biomedicine -- 14.1 Introduction -- 14.2 Biosensors -- 14.3 Controlled Drug Release -- 14.4 Tissue Engineering -- 14.5 Bio-MEMS -- 14.6 Biopassivating Coatings -- 14.7 Antimicrobial Coatings -- 14.8 Significance and Future Directions -- References -- Chapter 15 Encapsulation, Templating, and Patterning with Functional Polymers -- 15.1 Introduction -- 15.2 Encapsulation of 1D and 2D Structures with Functional Polymers -- 15.2.1 Encapsulation of Carbon Nanotubes (CNTs) -- 15.2.2 Encapsulation of Micro/Nanostructures -- 15.3 Patterning of Surfaces -- 15.3.1 Patterning of Multifunctional Surfaces -- 15.3.2 Surface Wrinkling.

15.4 Synthesis of Polymeric Micro/Nanostructures.
Abstract:
The method of CVD (chemical vapor deposition) is a versatile technique to fabricate high-quality thin films and structured surfaces in the nanometer regime from the vapor phase. Already widely used for the deposition of inorganic materials in the semiconductor industry, CVD has become the method of choice in many applications to process polymers as well. This highly scalable technique allows for synthesizing high-purity, defect-free films and for systematically tuning their chemical, mechanical and physical properties. In addition, vapor phase processing is critical for the deposition of insoluble materials including fluoropolymers, electrically conductive polymers, and highly crosslinked organic networks. Furthermore, CVD enables the coating of substrates which would otherwise dissolve or swell upon exposure to solvents. The scope of the book encompasses CVD polymerization processes which directly translate the chemical mechanisms of traditional polymer synthesis and organic synthesis in homogeneous liquids into heterogeneous processes for the modification of solid surfaces. The book is structured into four parts, complemented by an introductory overview of the diverse process strategies for CVD of polymeric materials. The first part on the fundamentals of CVD polymers is followed by a detailed coverage of the materials chemistry of CVD polymers, including the main synthesis mechanisms and the resultant classes of materials. The third part focuses on the applications of these materials such as membrane modification and device fabrication. The final part discusses the potential for scale-up and commercialization of CVD polymers.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: