Cover image for Integrability and Nonintegrability of Dynamical Systems.
Integrability and Nonintegrability of Dynamical Systems.
Title:
Integrability and Nonintegrability of Dynamical Systems.
Author:
Goriely, Alain.
ISBN:
9789812811943
Personal Author:
Physical Description:
1 online resource (435 pages)
Series:
Advanced Series in Nonlinear Dynamics ; v.19

Advanced Series in Nonlinear Dynamics
Contents:
Contents -- Preface -- Chapter 1 Introduction -- 1.1 A planar system -- 1.1.1 A dynamical system approach -- 1.1.2 An algebraic approach -- 1.1.3 An analytic approach -- 1.1.4 Relevant questions -- 1.2 The Lorenz system -- 1.2.1 A dynamical system approach -- 1.2.2 An algebraic approach -- 1.2.3 An analytic approach -- 1.2.4 Relevant questions -- 1.3 Exercises -- Chapter 2 Integrability: an algebraic approach -- 2.1 First integrals -- 2.1.1 A canonical example: The rigid body motion -- 2.2 Classes of functions -- 2.2.1 Elementary first integrals -- 2.2.2 Differential fields -- 2.3 Homogeneous vector fields -- 2.3.1 Scale-invariant systems -- 2.3.2 Homogeneous and weight-homogeneous decompositions -- 2.3.3 Weight-homogeneous decompositions -- 2.4 Building first integrals -- 2.4.1 A simple algorithm for polynomial first integrals -- 2.5 Second integrals -- 2.5.1 Darboux polynomials -- 2.5.2 Darboux polynomials for planar vector fields -- 2.5.3 The Prelle-Singer Algorithm -- 2.6 Third integrals -- 2.7 Higher integrals -- 2.8 Class-reduction -- 2.9 First integrals for vector fields in R3: the compatibility analysis -- 2.10 Integrability -- 2.10.1 Local integrability -- 2.10.2 Liouville integrability -- 2.10.3 Algebraic integrability -- 2.11 Jacobi's last multiplier method -- 2.12 Lax pairs -- 2.12.1 General properties -- 2.12.2 Construction of Lax pairs -- 2.12.3 Completion of Lax pairs -- 2.12.4 Recycling integrable systems -- 2.12.5 More on Lax pairs -- 2.13 Exercises -- Chapter 3 Integrability: an analytic approach -- 3.1 Singularities of functions -- 3.2 Solutions of differential equations -- 3.3 Singularities of linear differential equations -- 3.3.1 Fundamental solutions -- 3.3.2 Regular singular points -- 3.4 Singularities of nonlinear differential equations -- 3.4.1 Fixed and movable singularities.

3.5 The Painleve property -- 3.5.1 Historical digression I -- 3.5.2 Painleve's a-method -- 3.5.3 The isomonodromy deformation problem -- 3.5.4 Applications -- 3.6 Painleve equations and integrable PDEs -- 3.6.1 The theory of solitons and the Inverse Scattering Transform -- 3.6.2 The Ablowitz-Ramani-Segur conjecture -- 3.7 The PDE Painleve test -- 3.7.1 Integrability of ODEs -- 3.8 Singularity analysis -- 3.8.1 Step 1: The dominant behavior -- 3.8.2 Step 2: Kovalevskaya exponents -- 3.8.3 Step 3: The local solution -- 3.8.4 Formal existence of local solutions -- 3.8.5 Companion systems -- 3.8.6 Convergence of local solutions -- 3.8.7 A short list of singularity analyses -- 3.9 The Painleve tests -- 3.9.1 Painleve test #1: The Hoyer-Kovalevskaya method -- 3.9.2 Painleve test #2: The Gambier-ARS algorithm -- 3.9.3 Painleve test #3: The Painleve-CFP algorithm -- 3.9.4 Painleve property and normal forms -- 3.10 The weak-Painleve conjecture -- 3.11 Patterns of singularities for nonintegrable systems -- 3.11.1 Kovalevskaya fractals -- 3.11.2 Singularity clustering -- 3.12 Finite time blow-up -- 3.13 Exercises -- Chapter 4 Polynomial and quasi-polynomial vector fields -- 4.1 The quasimonomial systems -- 4.2 The quasimonomial transformations -- 4.3 New-time transformations -- 4.4 Canonical forms -- 4.5 The Newton polyhedron -- 4.6 Transformation of the Newton polyhedron -- 4.7 Historical digression: a new-old formalism -- 4.8 Algebraic Degeneracy -- 4.8.1 Degeneracy of matrix A -- 4.8.2 Degeneracy of matrix B -- 4.9 Transformation of first integrals -- 4.10 An algorithm for polynomial first integrals -- 4.11 Jacobi's last multiplier for quasimonomial systems -- 4.12 Application: semi-simple normal forms -- 4.13 Quasimonomial transformation and the Painleve property.

4.13.1 The transformations group of the Riemann sphere -- 4.14 Painleve tests and quasimonomial transformations -- 4.14.1 The dominant balances -- 4.14.2 Dominant balance and Newton's polyhedron -- 4.14.3 The Kovalevskaya exponents -- 4.14.4 Quasimonomial transformation of local series -- 4.15 The Painleve test for the Lotka-Volterra form -- 4.15.1 Step 1: dominant balances -- 4.15.2 Step 2: Kovalevskaya exponents -- 4.15.3 Step 3: compatibility conditions -- 4.16 Transformation of singularities -- 4.16.1 New-time transformation of local series -- 4.16.2 The weak-Painleve conjecture -- 4.16.3 New integrable systems -- 4.17 Exercises -- Chapter 5 Nonintegrability -- 5.1 The general approach: the variational equation -- 5.1.1 Nonintegrability of linear systems -- 5.2 First integrals and linear eigenvalues -- 5.3 First integrals and Kovalevskaya exponents -- 5.3.1 Yoshida's analysis -- 5.3.2 Resonances between Kovalevskaya exponents -- 5.3.3 Kovalevskaya exponents and Darboux polynomials -- 5.3.4 Kovalevskaya exponents for Hamiltonian systems -- 5.4 Complete integrability and resonances -- 5.5 Complete integrability and logarithmic branch points -- 5.6 Multivalued first integral and local solutions -- 5.7 Partial integrability -- 5.7.1 A natural arbitrary parameter -- 5.7.2 Necessary conditions for partial integrability -- 5.8 Exercises -- Chapter 6 Hamiltonian systems -- 6.1 Hamiltonian systems -- 6.1.1 First integrals -- 6.2 Complete integrability -- 6.2.1 Liouville integrability -- 6.2.2 Arnold-Liouville integrability -- 6.3 Algebraic integrability -- 6.4 Ziglin's theory of nonintegrability -- 6.4.1 Hamiltonian systems with two degrees of freedom -- 6.4.2 Ziglin's theorem in n dimensions -- 6.4.3 More on Ziglin's theory -- 6.4.4 The Morales-Ruiz and Ramis theorem -- 6.5 Exercises.

Chapter 7 Nearly integrable dynamical systems -- 7.0.1 An introductory example -- 7.1 General setup -- 7.1.1 General assumptions -- 7.1.2 Comments on the assumptions -- 7.2 A perturbative singularity analysis -- 7.2.1 The Painleve test -- 7.2.2 The w-series -- 7.2.3 Epsilon-expansion for the w-series -- 7.3 The Melnikov vector in n dimensions -- 7.3.1 The variational equation -- 7.3.2 The Melnikov vector -- 7.3.3 The method of residues -- 7.4 Singularity analysis and the Melnikov vector -- 7.4.1 The fundamental local solution -- 7.4.2 Residues and local solutions -- 7.4.3 The compatibility conditions and the residues -- 7.5 The algorithmic procedure -- 7.5.1 The computation of the Melnikov vector: a non-algorithmic procedure -- 7.5.2 The algorithmic procedure -- 7.6 Some illustrative examples -- 7.7 Exercises -- Chapter 8 Open problems -- Glossary -- Bibliography -- Index.
Abstract:
This invaluable book examines qualitative and quantitative methods for nonlinear differential equations, as well as integrability and nonintegrability theory. Starting from the idea of a constant of motion for simple systems of differential equations, it investigates the essence of integrability, its geometrical relevance and dynamical consequences. Integrability theory is approached from different perspectives, first in terms of differential algebra, then in terms of complex time singularities and finally from the viewpoint of phase geometry (for both Hamiltonian and non-Hamiltonian systems). As generic systems of differential equations cannot be exactly solved, the book reviews the different notions of nonintegrability and shows how to prove the nonexistence of exact solutions and/or a constant of motion. Finally, nonintegrability theory is linked to dynamical systems theory by showing how the property of complete integrability, partial integrability or nonintegrability can be related to regular and irregular dynamics in phase space. Contents: Integrability: An Algebraic Approach; Integrability: An Analytic Approach; Polynomial and Quasi-Polynomial Vector Fields; Nonintegrability; Hamiltonian Systems; Nearly Integrable Dynamical Systems; Open Problems. Readership: Mathematical and theoretical physicists and astronomers and engineers interested in dynamical systems.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: