Cover image for Nanomaterials : Processing and Characterization with Lasers.
Nanomaterials : Processing and Characterization with Lasers.
Title:
Nanomaterials : Processing and Characterization with Lasers.
Author:
Singh, S. C.
ISBN:
9783527646852
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (811 pages)
Contents:
Nanomaterials -- Contents -- Preface -- List of Contributors -- 1 Lasers: Fundamentals, Types, and Operations -- 1.1 Introduction of Lasers -- 1.1.1 Historical Development -- 1.1.2 Basic Construction and Principle of Lasing -- 1.1.3 Einstein Relations and Gain Coefficient -- 1.1.4 Multilevel Systems for Attaining Condition of Population Inversion -- 1.1.5 Threshold Gain Coefficient for Lasing -- 1.1.6 Optical Resonator -- 1.1.7 Laser Modes -- 1.2 Types of Laser and Their Operations -- 1.2.1 Solid Laser -- 1.2.1.1 Doped Insulator Laser -- 1.2.1.2 Semiconductor Laser -- 1.2.2 Gas Laser -- 1.2.2.1 Atomic Gas Laser -- He:Ne Laser -- 1.2.2.2 Ion Laser: Argon Ion Laser -- 1.2.2.3 Molecular Laser -- 1.2.3 Liquid Laser -- 1.3 Methods of Producing EUV/VUV, X-Ray Laser Beams -- 1.3.1 Free Electron Lasers (FEL) -- 1.3.2 X-Ray Lasers -- 1.3.3 EUV/VUV Lasers through Higher Harmonic Generation -- 1.4 Properties of Laser Radiation -- 1.4.1 Monochromaticity -- 1.4.2 Directionality -- 1.4.3 Coherence -- 1.4.4 Brightness -- 1.4.5 Focusing of Laser Beam -- 1.5 Modification in Basic Laser Structure -- 1.5.1 Mode Locking -- 1.5.1.1 Basic Principle of Mode Locking -- 1.5.1.2 Mode Locking Techniques -- 1.5.2 Q-Switching -- 1.5.3 Pulse Shaping -- References -- 2 Introduction of Materials and Architectures at the Nanoscale -- 2.1 Origin and Historical Development -- 2.2 Introduction -- 2.3 Band Theory of Solids -- 2.4 Quantum Confinement -- 2.5 Defects and Imperfections -- 2.5.1 Point Defect -- 2.5.2 Line Defects -- 2.5.3 Planar Defects -- 2.5.4 Volume or Bulk Defects -- 2.6 Metal, Semiconductor, and Insulator Nanomaterials -- 2.6.1 Metal Nanoparticles and Their Size-/Shape-Dependent Properties -- 2.6.2 Semiconductor Nanoparticles and Their Size-Dependent Properties -- 2.6.3 Insulator Nanoparticles -- 2.7 Various Synthesis Methods of Nanoscale Materials.

2.8 Various Techniques of Materials Characterization -- 2.8.1 Light Beam Characterization Techniques (200-1000 nm) -- 2.8.2 Infrared (IR) Characterization (1000-200 000 nm) -- 2.8.3 X-Ray-Beam-Based Characterization Methods -- 2.8.4 Electron-Beam-Based Characterization Methods -- 2.8.5 Nuclear Radiation and Particle-Based Spectroscopy -- 2.9 Self-Assembly and Induced Assembly, Aggregation, and Agglomeration of Nanoparticles -- 2.10 Applications of Lasers in Nanomaterial Synthesis, Modification, and Characterization -- 2.11 Summary and Future Prospects -- References -- Part I Nanomaterials: Laser Based Processing Techniques -- 3 Laser-Matter Interaction -- 3.1 High-Intensity Femtosecond Laser Interactions with Gases and Clusters -- 3.1.1 Introduction -- 3.1.2 Laser-Atom Interactions -- 3.1.3 Laser-Molecule Interactions -- 3.1.4 High-Pressure Atomic Physics -- 3.1.5 Strongly Coupled Plasmas -- 3.1.6 Clusters -- 3.1.7 Laser-Cluster Production -- 3.1.8 Laser-Cluster Interaction -- 3.1.9 Aerosol Monitoring -- 3.1.10 Atmospheric Effects -- 3.1.11 Conclusion and Outlook -- References -- 3.2 Laser-Matter Interaction: Plasma and Nanomaterials Processing -- 3.2.1 Introduction -- 3.2.2 Influences of Laser Irradiance on Melting and Vaporization Processes -- 3.2.3 Influence of Laser Pulse Width and Pulse Shape -- 3.2.4 Influences of Laser Wavelength on Ablation Threshold and Plasma Parameters -- 3.2.5 Influences of Background Gas Pressure on the Plasma Characteristic and Morphology of Produced Materials -- 3.2.6 Double Pulse Laser Ablation -- 3.2.7 Electric- and Magnetic-Field-Assisted Laser Ablation -- 3.2.8 Effect of Laser Polarization -- 3.2.9 Conclusions -- Acknowledgments -- References -- 4 Nanomaterials: Laser-Based Processing in Gas Phase -- 4.1 Synthesis and Analysis of Nanostructured Thin Films Prepared by Laser Ablation of Metals in Vacuum.

4.1.1 Introduction -- 4.1.2 Experimental Details -- 4.1.3 Results and Discussion -- 4.1.4 Conclusions -- Acknowledgments -- References -- 4.2 Synthesis of Nanostructures with Pulsed Laser Ablation in a Furnace -- 4.2.1 General Consideration for Pulsed Laser Deposition: an Introduction -- 4.2.1.1 One-Dimensional Nanostructure -- 4.2.2 Thermal-Assisted Pulsed Laser Deposition -- 4.2.2.1 Furnace System -- 4.2.2.2 Laser Ablation Setup -- 4.2.2.3 Experimental Procedure -- 4.2.3 Single-Crystalline Branched Zinc Phosphide Nanostructures with TAPLD -- 4.2.3.1 Properties of Zn3P2 -- 4.2.3.2 Zn3P2 Nanostructures -- 4.2.3.3 Properties and Devices Fabrication -- 4.2.3.4 Summary of the Zn3P2 Nanostructures -- 4.2.4 Aligned Ferrite Nanorods, NWs, and Nanobelts with the TAPLD Process -- 4.2.4.1 Introduction -- 4.2.4.2 Experimental Method -- 4.2.4.3 Results and Discussion -- 4.2.4.4 Summary of the Iron Oxide Nanostructures -- References -- 4.3 ZnO Nanowire and Its Heterostructures Grown with Nanoparticle-Assisted Pulsed Laser Deposition -- 4.3.1 Introduction -- 4.3.2 From 2D Nanowall to 1D Nanowire with PLD -- 4.3.3 NAPLD Nanowire Growth Mechanism -- 4.3.4 Controlled Nanowire Growth with NAPLD -- 4.3.4.1 Influence of Substrate-Target Distance -- 4.3.4.2 Influence of Laser Energy -- 4.3.4.3 Influence of Substrate Annealing -- 4.3.4.4 Influence of Wetting Layer -- 4.3.5 Growth of Nanowire Heterostructures Based on Low-Density Nanowires -- 4.3.6 Conclusions -- Acknowledgments -- References -- 4.4 Laser-Vaporization-Controlled Condensation for the Synthesis of Semiconductor, Metallic, and Bimetallic Nanocrystals and Nanoparticle Catalysts -- 4.4.1 Introduction -- 4.4.2 Brief Overview of Nucleation and Growth from the Vapor Phase -- 4.4.3 The LVCC Method -- 4.4.4 Silicon Nanocrystals -- 4.4.5 Laser Alloying of Nanoparticles in the Vapor Phase.

4.4.5.1 Gold-Silver Alloy Nanoparticles -- 4.4.5.2 Size Control by Laser Irradiation of Nanoparticles in Solutions -- 4.4.5.3 Gold-Palladium Alloy Nanoparticles -- 4.4.6 Intermetallic Nanoparticles -- 4.4.6.1 FeAl and NiAl Intermetallic Nanoparticles -- 4.4.7 Growth of Filaments and Treelike Assembly by Electric Field -- 4.4.8 Upconverting Doped Nanocrystals by the LVCC Method -- 4.4.9 Supported Nanoparticle Catalysts by the LVCC Method -- 4.4.10 Conclusion -- Acknowledgments -- References -- 5 Nanomaterials: Laser-Induced Nano/Microfabrications -- 5.1 Direct Femtosecond Laser Nanostructuring and Nanopatterning on Metals -- 5.1.1 Introduction -- 5.1.2 Basic Principles of Surface Nanostructuring by Direct Femtosecond Laser Ablation -- 5.1.3 Nanostructures -- 5.1.4 Femtosecond Laser-Induced Periodic Structures (Periodic Nanogrooves) on Metals -- 5.1.5 Nanostructure-Textured Microstructures -- 5.1.5.1 Nanostructure-Textured Microgroove Structures -- 5.1.5.2 Nanostructure-Textured Columnar Microstructures -- 5.1.6 Single Nanoholes and Arrays of Nanoholes -- 5.1.7 Applications of Femtosecond Laser-Induced Surface Structures on Metals -- 5.1.7.1 Modification of Optical Properties -- 5.1.7.2 Modification of Wetting Properties -- 5.1.7.3 Biomedical Applications -- 5.1.7.4 Other Applications -- 5.1.8 Summary -- References -- 5.2 Laser-Induced Forward Transfer: an Approach to Direct Write of Patterns in Film Form -- 5.2.1 Introduction -- 5.2.2 Principle and Method -- 5.2.3 LIFT of Materials -- 5.2.3.1 Metals and Single Element -- 5.2.3.2 Oxides -- 5.2.3.3 Other Compounds Including Biomaterials -- 5.2.4 Applications -- 5.2.5 Summary and Conclusion -- References -- 5.3 Laser-Induced Forward Transfer: Transfer of Micro-Nanomaterials on Substrate -- 5.3.1 Introduction of Laser-Induced Forward Transfer (LIFT) -- 5.3.2 Spatial Resolution of the LIFT Process.

5.3.3 Transfer of Thermally and Mechanically Sensitive Materials -- References -- 5.4 Laser-Induced Forward Transfer for the Fabrication of Devices -- 5.4.1 Introduction -- 5.4.2 LIFT Techniques for Direct-Write Applications -- 5.4.2.1 Traditional LIFT -- 5.4.3 Modified LIFT Methods -- 5.4.3.1 Matrix-Assisted Pulsed Laser Evaporation Direct-Write (MAPLE-DW) -- 5.4.3.2 Laser Molecular Implantation (LMI) -- 5.4.3.3 Layered Donor Systems with Intermediate Absorbing Films -- 5.4.4 Conclusions and Future Aspects -- Acknowledgments -- References -- 6 Nanomaterials: Laser-Based Processing in Liquid Media -- 6.1 Liquid-Assisted Pulsed Laser Ablation/Irradiation for Generation of Nanoparticles -- 6.1.1 Introduction -- 6.1.2 Advantages of Liquid-Phase Laser Ablation over Gas Phase -- 6.1.3 Classification of Liquid-Phase Laser Ablation on the Basis of Target Characteristics -- 6.1.3.1 Liquid-Phase Laser Ablation of Solid Bulk Target Materials -- 6.1.3.2 Laser-Induced Melting and Fragmentation of Liquid-Suspended Particles -- 6.1.3.3 Laser Irradiation of Metal Salts or Liquid Precursors -- 6.1.4 Applications of Nanomaterials Produced by Liquid-Phase Pulsed Laser Ablation/Irradiation -- 6.1.4.1 Applications in PV Solar Cells -- 6.1.4.2 In situ Functionalization for Biological Applications -- 6.1.4.3 Semiconductor NPs as Fluorescent Markers -- 6.1.4.4 Surface-Enhanced Raman Scattering (SERS) Active Substrates -- 6.1.4.5 Nanofertilizer for Seed Germination and Growth Stimulation -- 6.1.4.6 Other Applications -- 6.1.5 Conclusion and Future Prospects -- Acknowledgments -- References -- 6.2 Synthesis of Metal Compound Nanoparticles by Laser Ablation in Liquid -- 6.2.1 Introduction -- 6.2.2 Synthesis of Nanoparticles by LAL -- 6.2.2.1 Oxide Nanoparticles -- 6.2.2.2 Carbide Nanoparticles -- 6.2.2.3 Nitride Nanoparticles -- 6.2.3 Conclusions -- Acknowledgments.

References.
Abstract:
The first in-depth treatment of the synthesis, processing, and characterization of nanomaterials using lasers, ranging from fundamentals to the latest research results, this handy reference is divided into two main sections. After introducing the concepts of lasers, nanomaterials, nanoarchitectures and laser-material interactions in the first three chapters, the book goes on to discuss the synthesis of various nanomaterials in vacuum, gas and liquids. The second half discusses various nanomaterial characterization techniques involving lasers, from Raman and photoluminescence spectroscopies to light dynamic scattering, laser spectroscopy and such unusual techniques as laser photo acoustic, fluorescence correlation spectroscopy, ultrafast dynamics and laser-induced thermal pulses. The specialist authors adopt a practical approach throughout, with an emphasis on experiments, set-up, and results. Each chapter begins with an introduction and is uniform in covering the basic approaches, experimental setups, and dependencies of the particular method on different parameters, providing sufficient theory and modeling to understand the principles behind the techniques.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: