Cover image for INDUSTRIAL ACCELERATORS AND THEIR APPLICATIONS.
INDUSTRIAL ACCELERATORS AND THEIR APPLICATIONS.
Title:
INDUSTRIAL ACCELERATORS AND THEIR APPLICATIONS.
Author:
Hamm, Robert W.
ISBN:
9789814307055
Personal Author:
Physical Description:
1 online resource (436 pages)
Contents:
CONTENTS -- Dedication -- Introduction to the Beam Business Robert W. Hamm and Marianne E. Hamm -- Chapter 1. Ion Implantation for Fabrication of Semiconductor Devices and Materials Michael I. Current -- 1. Introduction -- 2. Applications of Ion Implantation: Devices and Materials -- 2.1 Pre-amorphization -- 2.2 Cocktail implants -- 2.3 Carbon implants for tensile strained nMOS -- 2.4 Oxygen implants for direct formation of Silicon-on-Insulator (SOI) wafers -- 2.5 Hydrogen implants for formation of SOI wafers by layer transfer -- 3. Accelerator Designs -- 3.1 Beamline system types -- 3.2 Accel-decel beamlines -- 3.3 MeV beamlines -- 3.4 Plasma immersion and ion shower implanters -- 3.5 SIMOX high-current, high-temperature implanters -- 4. Ion Source Designs -- 4.1 Special ion sources: SIMOX, molecular ions, non-volatile elements, and large-area beams -- 5. Scanning Methods -- 5.1 Beam deflection and wafer motion in orthogonal directions -- 5.2 Spinning wheel and pendulum wafer scanning -- 6. New Directions: Gas Cluster Ions, Photovoltaic Cell Doping, and MeV Protons for Si Membrane Cutting -- 6.1 Gas cluster ions -- 6.2 Doping of Si-based photovoltaic cells -- 6.2.1 Alternatives to implant doping for PV cells -- 6.2.2 Advanced PV cells -- 6.3 High-current, multi-MeV proton beams for fabrication of thin Si PV membranes -- 7. Implantation into Metals and Biomaterials -- 7.1 Metals: hardness, friction, and corrosion -- 7.2 Biomaterials treated by plasma immersion implantation and deposition -- 8. Summary -- Acknowledgements -- References -- Chapter 2. Electron Beam Materials Processing Donald E. Powers -- 1. Introduction -- 2. Electron Beam Equipment -- 3. Electron Beam Welding -- 3.1 Large steam turbines -- 3.2 High efficiency impellers -- 3.3 Speed gears -- 3.4 Drive rings -- 4. EB Cutting and Drilling -- 5. EB Heat Treating.

6. EB Melting and Casting -- 7. Summary and Future Trends -- Acknowledgements -- References -- Chapter 3. Electron Beam Materials Irradiators Marshall R. Cleland -- 1. Introduction -- 2. Physical Properties of High-Energy Electrons and X-Rays -- 2.1 High-energy electrons -- 2.2 High-energy X-rays -- 2.3 Radiation dosimetry -- 2.4 Dose versus electron beam power -- 2.5 Dose versus electron beam current -- 3. Industrial Electron Accelerators -- 3.1 Low-energy accelerators -- 3.2 Medium-energy accelerators -- 3.3 High-energy accelerators -- 4. Major Applications of Industrial EB Irradiators -- 4.1 Cross-linking of materials -- 4.1.1 Wire and cable insulation -- 4.1.2 Heat-shrinkable plastic tubing and film -- 4.1.3 Curing of inks, coatings, and adhesives -- 4.1.4 Automobile tires -- 4.1.5 Polyethylene foam -- 4.2 Radiation sterilization of medical devices -- 4.3 Irradiation of foods -- 5. Other EB Irradiation Applications -- 5.1 Treatment of waste materials -- 5.2 Cleaning of stack gases -- 5.3 Curing of composite materials -- 5.4 Silicon-carbide fiber manufacturing -- 5.5 Production of fuel cells -- 5.6 Cross-linking of PTFE and rubber sheeting -- 5.7 Seed and soil disinfestation -- 5.8 Human tissue sterilization -- 5.9 Direct food contact coatings -- 6. Summary -- Acknowledgements -- References -- Chapter 4. Accelerator Production of Radionuclides David J. Schlyer and Thomas J. Ruth -- 1. Introduction -- 2. Applications of Radionuclides -- 2.1 Radiotracers -- 2.2 Nuclear medicine imaging -- 2.3 Therapeutic and other medical applications -- 2.3.1 Brachytherapy -- 2.3.2 Targeted radiotherapy -- 2.3.3 Other medical applications -- 2.4 Industrial -- 3. Accelerators for Radionuclide Production -- 3.1 Cyclotrons -- 3.1.1 Ion source -- 3.1.2 Ion injection -- 3.1.3 Beam extraction -- 3.1.4 Beam transport -- 3.1.5 Targets.

3.1.6 Radiation shielding and facilities requirements -- 3.2 Linear accelerators -- 3.3 Choice of accelerator -- 4. General Principles of Radionuclide Production -- 4.1 Nuclear reactions -- 4.1.1 Coulomb barrier -- 4.1.2 Reaction models -- 4.1.3 Q value and threshold energy -- 4.1.4 Cross section -- 4.2 Optimizing production -- 4.2.1 Production rate -- 4.2.2 Saturation factors -- 4.2.3 Specific activity -- 5. Accelerator Targetry -- 5.1 Stopping power and energy loss -- 5.2 Energy straggling -- 5.3 Small angle multiple scattering -- 5.4 Beam heating and density reduction -- 5.5 Ionization of target materials -- 5.6 Radiation damage and activation -- 5.7 Chemical reactions -- 5.8 Pressure increases -- 5.9 Beam focusing -- 6. Conclusions and Future Directions -- References -- Chapter 5. Industrial Aspects of Ion Beam Analysis Ragnar Hellborg and Harry J. Whitlow -- 1. Ion Beam Analysis in Industry -- 2. Accelerators for IBA -- 3. Quantity Analysis -- 3.1 Introductory remarks -- 3.2 PIXE technique -- 3.3 PIGE technique -- 3.4 Accelerator Mass Spectrometry (AMS) -- 4. Depth Profiling Methods -- 4.1 Introductory remarks -- 4.2 Fundamentals of RBS and ERDA measurements -- 4.3 Basis of the quantitative analysis in ERDA and RBS -- 4.4 Rutherford Backscattering Spectrometry (RBS) -- 4.4.1 Determination of the thickness of the TiO2 film -- 4.4.2 Determination of the composition of the titanium oxide film -- 4.4.3 Analysis of complex RBS spectra -- 4.5 Elastic Recoil Detection Analysis (ERDA) -- 4.6 Nuclear reaction analysis (NRA) -- 4.7 Charged particle activation analysis (CPAA) -- 5. Industrial Facilities for Ion Beam Analysis -- Acknowledgements -- References -- Chapter 6. Production and Applications of Neutrons Using Particle Accelerators David L. Chichester -- 1. Introduction -- 2. Neutron Production -- 2.1 Ion reactions -- 2.1.1 2H+2H 3He+n.

2.1.2 2H+3H 4He+n -- 2.1.3 1H+7Li 7Be+n -- 2.1.4 2H+7Li 8Be+n -- 2.1.5 1H+9Be 9B+n -- 2.1.6 2H+9Be 10B+n -- 2.1.7 Other two-body ion reactions -- 2.2 Reactions using photons -- 3. Industrial Neutron Production Accelerators -- 3.1 Open-vacuumsystems -- 3.2 Sealed-tube systems -- 3.2.1 History -- 3.2.2 Industrial sealed-tube ENGs -- 3.2.3 Long-lived DD neutron generator design considerations -- 3.3 Photoneutron systems -- 3.4 Other electronic neutron sources -- 4. Industrial Applications -- 4.1 Neutron interactions -- 4.2 Geophysical exploration -- 4.3 Gauging and radiography -- 4.4 Laboratory activation analysis -- 4.5 Biomedical applications -- 4.6 Bulkmaterial analysis -- 4.7 Radiation effects testing -- 4.8 Detection of contraband, high explosives, and chemical weapon agents -- 4.9 Fissionable material analysis for safeguards -- 4.10 Fissionable material detection for screening and security -- 4.11 Other applications -- 5. Summary and Future Trends -- Acknowledgements -- Disclaimer -- References -- Chapter 7. Nondestructive Testing and Inspection Using Electron Linacs William A. Reed -- 1. Introduction -- 1.1 History of X-rays for NDT -- 1.2 X-ray tubes vs. electron linacs -- 2. Market Overview -- 2.1 Computed tomography -- 2.2 Metrology and reverse engineering -- 2.3 Hazardous waste identification -- 2.4 Portable inspection applications -- 2.5 Isotope replacement -- 2.6 Homeland security -- 2.7 Air cargo -- 3. NDT Electron Linac Technology -- 3.1 NDT accelerator basics -- 3.2 Major subsystems -- 3.3 Beam properties -- 3.3.1 Radiation leakage -- 3.3.2 Energy spectrum -- 3.3.3 Beam flatness -- 3.3.4 Beam symmetry -- 3.3.5 Focal spot size -- 3.3.6 Collimation -- 4. Digital Detectors -- 4.1 High energy digital detectors -- 4.2 Detector performance -- 5. Traditional Radiographic Testing and Inspection Applications.

5.1 The radiographic inspection facility -- 5.2 Radiographic principles -- 5.3 Radiographic procedures -- 5.3.1 Radiography of castings -- 5.3.2 Radiography of welds -- 5.3.3 Radiography of assemblies -- 5.3.4 Radiography of rocket motors -- 6. Security Inspection Applications -- 6.1 X-ray cargo inspection -- 6.2 Recent innovations -- 6.2.1 Interlaced dual-energy accelerators -- 6.2.2 Advanced detector technology -- 6.2.3 More powerful software -- 6.3 X-ray cargo screening trends -- 7. High Energy Industrial CT Applications -- 7.1 Engineering and design applications -- 7.2 Production environment -- 8. Quality Standards andMeasurements -- 8.1 Half-value layer energy measurements -- 8.2 Cargo and vehicle screening standards -- 8.3 Digital data standardization -- 9. Summary -- Acknowledgements -- References -- Chapter 8. Industrial Use of Synchrotron Radiation: Love at Second Sight Josef Hormes and Jeffrey Warner -- 1. Introduction -- 2. Synchrotron Radiation: History and Properties -- SR-based Techniques for Industrial Applications -- 4. Synchrotron Radiation for Quality Control and the Control of Regulatory Requirements -- 4.1 Quality control -- 4.2 Control of regulatory requirements -- 4.2.1 Workplace aerosols -- 4.2.2 Tailings management -- 5. Synchrotron Radiation for Production -- 5.1 X-ray lithography for the fabrication of microelectronic devices -- 5.2 Deep etch X-ray lithography and microfabrication -- 6. Synchrotron Radiation for Research and Development -- 6.1 Biotechnology, pharmaceuticals, and cosmetics -- 6.1.1 Cosmetics and the human hair -- 6.1.2 Metals containing drugs -- 6.1.3 Protein crystallography -- 6.2 Automotive -- 6.2.1 Automotive catalysts for emission control -- 6.2.2 Rubber research -- 6.3 Mining -- 7. Concluding Remarks -- References -- Index.
Abstract:
This unique new book is a comprehensive review of the many current industrial applications of particle accelerators, written by experts in each of these fields. Readers will gain a broad understanding of the principles of these applications, the extent to which they are employed, and the accelerator technology utilized. The book also serves as a thorough introduction to these fields for non-experts and laymen.Due to the increased interest in industrial applications, there is a growing interest among accelerator physicists and many other scientists worldwide in understanding how accelerators are used in various applications. The government agencies that fund scientific research with accelerators are also seeking more information on the many commercial applications that have been or can be developed with the technology developments they are funding. Many industries are also doing more research on how they can improve their products or processes using particle beams.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: