Cover image for Bioceramic Coatings for Medical Implants : Trends and Techniques.
Bioceramic Coatings for Medical Implants : Trends and Techniques.
Title:
Bioceramic Coatings for Medical Implants : Trends and Techniques.
Author:
Heimann, Robert B.
ISBN:
9783527684021
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (492 pages)
Contents:
Cover -- Contents -- Preface -- Glossary -- Chapter 1 Bioceramics - A Historical Perspective -- 1.1 Alumina -- 1.2 Zirconia -- 1.3 Calcium Phosphates -- References -- Chapter 2 Socio-Economic Aspects and Scope of Bioceramic Materials and Biomedical Implants -- 2.1 Types of Biomaterial -- 2.2 The Growing Global and Regional Markets for Biomedical Implants -- 2.2.1 A Worldwide Need for Implants -- 2.2.2 Market Projections and Forecasts for Biomaterials and Biomedical Implants -- 2.2.2.1 Biomaterials -- 2.2.2.2 Large-Joint Reconstructive Implants (Hip and Knee) -- 2.2.2.3 Small Joints and Extremities Implants -- 2.2.2.4 Spinal Implants -- 2.2.2.5 Dental Implants -- 2.3 Role of Bioceramic Coatings in Arthroplasty -- 2.4 Ceramic Femoral Ball Heads -- 2.4.1 Mechanical and Functional Properties -- 2.4.2 Manufacturing of Ceramic Femoral Ball Heads -- 2.4.3 Discolouration of Zirconia by Ionising Radiation -- References -- Chapter 3 Fundamentals of Interaction of Bioceramics and Living Matter -- 3.1 Principle of Biocompatibility -- 3.2 Hierarchical Structure of Bone and Teeth -- 3.2.1 Bone Structure -- 3.2.2 Tooth Structure -- 3.3 Bioceramic/Bone Interface -- 3.3.1 Elasticity Mismatch -- 3.3.2 Interfacial Loosening -- 3.4 Basic Aspects of Biomineralisation -- 3.5 Interaction at a Cellular Level -- 3.6 Interaction at a Tissue Level -- 3.7 Advantages of Hydroxyapatite and Bioglass Coatings -- 3.8 The Promise of Cytokines -- References -- Chapter 4 Structure and Properties of Bioceramics Used in Orthopaedic and Dental Implants -- 4.1 Bioinert Ceramics -- 4.1.1 Alumina -- 4.1.2 Stabilised Zirconia -- 4.1.2.1 Transformation Toughening of Zirconia Ceramics -- 4.1.2.2 Mechanical Properties of Zirconia -- 4.1.2.3 Biocompatibility and Hydrolytic Stability of Zirconia -- 4.2 Bioactive Ceramics -- 4.2.1 Surface-Active Bioglasses.

4.2.2 Hydroxyapatite -- 4.2.3 Transition Metal-Substituted Calcium Orthophosphates -- 4.2.4 Resorbable Calcium Orthophosphates -- 4.2.4.1 Tricalcium Phosphates -- 4.2.4.2 Tetracalcium Phosphate -- 4.2.4.3 Ca-PO4 Sheet Structures -- 4.2.4.4 Highly Soluble Alkali-Containing Calcium Orthophosphates -- 4.2.4.5 Other Resorbable Bioceramics -- References -- Chapter 5 Technology of Coating Deposition -- 5.1 Overview -- 5.2 Non-Thermal Deposition Methods -- 5.2.1 Biomimetic Route -- 5.2.1.1 General Aspects -- 5.2.1.2 Chemistry of Biomimetic Precipitation -- 5.2.1.3 Biomimetic Calcium Phosphate Coatings Deposited on Various Substrates -- 5.2.2 Sol-Gel Deposition -- 5.2.2.1 Titania Films and Coatings -- 5.2.2.2 Hydroxyapatite -- 5.2.2.3 Other Types of Coating -- 5.2.3 Dip and Spin Coating -- 5.2.3.1 Dip Coating -- 5.2.3.2 Spin Coating -- 5.2.4 Electrochemical Deposition (ECD) -- 5.2.4.1 Electrochemical Reactions -- 5.2.4.2 Acid-Base Reactions -- 5.2.4.3 Precipitation Reactions -- 5.2.5 Electrophoretic Deposition (EPD) -- 5.2.5.1 General Aspects -- 5.2.5.2 Electrophoretic Deposition of Calcium Phosphate Coatings -- 5.2.6 Thermal Substrate Deposition (Hydroprocessing) -- 5.2.7 Hydrothermal Coating Deposition -- 5.2.8 Electron- and Ion Beam-Assisted Deposition (EBAD, IBAD) -- 5.2.9 Radio Frequency (r.f.) Magnetron Sputtering -- 5.3 Thermal Deposition Methods -- 5.3.1 Atmospheric Plasma Spraying (APS) -- 5.3.1.1 The Physics Behind the Process -- 5.3.1.2 Micro-Plasma Spraying (MPS) and Low Energy Plasma Spraying (LEPS) -- 5.3.2 Low-Pressure (Vacuum) Plasma Spraying (LPPS, VPS) -- 5.3.3 Suspension Plasma Spraying (SPS) -- 5.3.3.1 Hydroxyapatite Coatings -- 5.3.3.2 Titanium Oxide Coatings -- 5.3.3.3 Bioglass Coatings -- 5.3.3.4 Other Types of Coating -- 5.3.4 High Velocity Suspension Flame Spraying (HVSFS).

5.3.4.1 Hydroxyapatite Coatings -- 5.3.4.2 Titanium Oxide Coatings -- 5.3.4.3 Bioglass Coatings -- 5.3.4.4 Other Coatings -- 5.3.5 Solution Precursor Plasma Spraying (SPPS) -- 5.3.6 Cold Gas Dynamic Spraying (CGDS) -- 5.3.6.1 Fundamentals -- 5.3.6.2 Bioceramic Coatings -- 5.3.7 Plasma Electrolytic Oxidation (PEO) -- 5.3.7.1 Magnesium Substrates -- 5.3.7.2 Titanium Substrates -- 5.3.8 Pulsed Laser Deposition (PLD) -- 5.4 Other Techniques -- 5.4.1 Flame Spraying -- 5.4.1.1 Oxygen/Acetylene Flame Spraying -- 5.4.1.2 High Velocity Oxyfuel Spraying (HVOF) -- 5.4.2 Inductively Coupled Plasma Spraying (ICPS) -- 5.4.3 Chemical Vapour Deposition (CVD) -- 5.4.4 Laser Alloying -- 5.4.5 Phase Inversion Technique -- References -- Chapter 6 Deposition, Structure, Properties and Biological Function of~Plasma-Sprayed Bioceramic Coatings -- 6.1 General Requirements and Performance Profile of Plasma-Sprayed Bioceramic Coatings -- 6.2 Structure and Biomedical Functions of Bioceramic Coatings -- 6.2.1 Hydroxyapatite Coatings -- 6.2.1.1 Microstructural and Compositional Changes During Plasma Spraying and Incubation in SBF -- 6.2.1.2 Thermal Decomposition of Hydroxyapatite During Plasma Spraying -- 6.2.1.3 Parametric Study of Thermal Decomposition of Hydroxyapatite -- 6.2.1.4 The Oxyapatite Problem -- 6.2.1.5 Biological Responses to Hydroxyapatite Coatings -- 6.2.2 Composite Coatings -- 6.2.2.1 Hydroxyapatite/Titania Composite Coatings -- 6.2.2.2 Hydroxyapatite/Zirconia Composite Coatings -- 6.2.2.3 Hydroxyapatite/Alumina/Carbon Nanotube Composite Coatings -- 6.2.3 Biphasic Hydroxyapatite/Tricalcium Phosphate Coatings -- 6.2.4 Transition Metal-Substituted Calcium Orthophosphate Coatings -- 6.2.4.1 Coating Thickness -- 6.2.4.2 Coating Porosity -- 6.2.4.3 Tensile Adhesion and Shear Strengths -- 6.3 The Role of Bond Coats.

6.3.1 Engineering the Substrate-Coating Interface -- 6.3.2 Selected Bond Coats -- 6.3.2.1 Calcium Silicate Bond Coats -- 6.3.2.2 Titania Bond Coats -- 6.3.2.3 Zirconia Bond Coats -- 6.3.2.4 Mixed Zirconia/Titania Bond Coats -- References -- Chapter 7 Characterisation and Testing of Bioceramic Coatings -- 7.1 Phase Composition: X-ray Diffraction -- 7.1.1 Fundamentals -- 7.1.2 X-ray Diffraction of Plasma-Sprayed Hydroxyapatite Coatings -- 7.2 Phase Composition: Vibrational (Infrared and Raman) Spectroscopy -- 7.2.1 Fundamentals -- 7.2.1.1 Infrared Spectroscopy -- 7.2.1.2 Raman Spectroscopy -- 7.2.2 Raman Microscopy of Bioceramic and Photoactive Titania Coatings -- 7.2.3 Infrared and Raman Spectra of Hydroxyapatite Coatings -- 7.2.3.1 Fourier Transform Infrared (FTIR) Spectroscopy -- 7.2.3.2 Raman spectroscopy -- 7.3 Phase Composition: Nuclear Magnetic Resonance Spectroscopy -- 7.3.1 Fundamentals -- 7.3.2 NMR Spectra of Hydroxyapatite Coatings -- 7.4 Phase Composition: Cathodoluminescence -- 7.4.1 Fundamentals -- 7.4.2 Cathodoluminescence Microscopy of Plasma-Sprayed Hydroxyapatite Coatings -- 7.5 Adhesion of Coatings to the Substrate -- 7.5.1 Fundamentals -- 7.5.1.1 Tensile Pull Test -- 7.5.1.2 Modified Peel Test -- 7.5.1.3 Scratch Testing -- 7.5.1.4 Ultrasonic Testing -- 7.5.2 Adhesion of Plasma-Sprayed Hydroxyapatite Coatings -- 7.5.2.1 Modified Peel Test According to ASTM D3167-10 -- 7.5.2.2 Tensile Test -- 7.5.2.3 Scratch Test -- 7.5.2.4 Laser Shock Adhesion Test (LASAT) -- 7.6 Residual Coating Stresses -- 7.6.1 Fundamentals -- 7.6.2 X-ray Diffraction Measurements (sin2ψ-Technique) -- 7.6.3 Stress Determination by Curvature Measurement (Almen-Type Test) -- 7.6.4 Hole-Drilling Strain Gauge Method -- 7.6.5 Photoluminescence Piezospectroscopy.

7.6.6 Residual Stresses in Plasma-Sprayed Hydroxyapatite Coatings -- 7.6.6.1 Stress Analysis by X-ray Diffraction -- 7.6.6.2 Stress Analysis by Curvature Measurement -- 7.6.6.3 Stress Analysis by the Hole-Drilling Strain Gauge Method -- 7.6.6.4 Stress Analysis by Raman Piezospectroscopy -- 7.7 Fundamentals of Roughness and Porosity -- 7.8 Microhardness -- 7.8.1 Fundamentals -- 7.8.2 Microhardness of Hydroxyapatite Coatings -- 7.9 Potentiodynamic Polarisation and Electrochemical Impedance Spectroscopy (EIS) -- 7.9.1 Fundamentals -- 7.9.2 Corrosion Protection of Metal Implants through Coatings -- 7.10 Biological Performance Testing of Bioceramic Coatings -- 7.10.1 Composition of Simulated Body Fluids -- 7.10.2 Interaction of Simulated Body Fluids and Coatings -- 7.10.2.1 Structure and Transformation of Amorphous Calcium Phosphate (ACP) -- 7.10.2.2 EELS and PIXE Studies -- 7.10.3 Cell Proliferation and Viability Tests -- 7.10.3.1 Alkaline Phosphatase (ALP) Activity -- 7.10.3.2 Expression of Non-collagenous Proteins -- 7.10.3.3 AlamarBlue® and MTT Assays -- 7.10.3.4 Fluorescence Staining -- 7.10.4 In vivo Testing of Bioceramic Coatings Using Animal Models -- 7.10.4.1 Rat Model -- 7.10.4.2 Rabbit Model -- 7.10.4.3 Dog Model -- 7.10.4.4 Sheep Model -- 7.10.4.5 Other Animal Models -- References -- Chapter 8 Future Developments and Outlook -- References -- Appendix: Relevant Scientific Journals/Book Series with Bioceramic Content -- Index -- EULA.
Abstract:
Reflecting the progress in recent years, this book provides in-depth information on the preparation, chemistry, and engineering of bioceramic coatings for medical implants. It is authored by two renowned experts with over 30 years of experience in industry and academia, who know the potentials and pitfalls of the techniques concerned. Following an introduction to the principles of biocompatibility, they present the structures and properties of various bioceramics from alumina to zirconia. The main part of the work focuses on coating technologies, such as chemical vapor deposition, sol-gel deposition and thermal spraying. There then follows a discussion of the major interactions of bioceramics with bone or tissue cells, complemented by an overview of the in-vitro testing methods of the biomineralization properties of bioceramics. The text is rounded off by chapters on the functionalization of bioceramic coatings and a look at future trends. As a result, the authors bring together all aspects of the latest techniques for designing, depositing, testing, and implementing improved and novel bioceramic coating compositions, providing a full yet concise overview for beginners and professionals.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: