Cover image for Bacterial Evasion of Host Immune Responses.
Bacterial Evasion of Host Immune Responses.
Title:
Bacterial Evasion of Host Immune Responses.
Author:
Henderson, Brian.
ISBN:
9781139147088
Personal Author:
Physical Description:
1 online resource (330 pages)
Series:
Advances in Molecular and Cellular Microbiology ; v.2

Advances in Molecular and Cellular Microbiology
Contents:
Cover -- Half-title -- Series-title -- Title -- Copyright -- Contents -- Contributors -- Preface -- PART I Recognition of bacteria -- CHAPTER 1 The dendritic cell in bacterial infection: Sentinel or Trojan horse? -- 1.1 INTRODUCTION -- 1.2 DENDRITIC CELLS AND THE IMMUNE RESPONSE -- 1.2.1 The dendritic cell family -- 1.2.2 Relationship between dendritic cells and macrophages -- 1.2.3 The molecular cell biology of the dendritic cells -- 1.3 DENDRITIC CELLS AND BACTERIAL IMMUNE RESPONSES -- 1.3.1 What activates dendritic cell migration/differentiation in response to bacterial infection? -- 1.3.2 Toll-like receptors (TLRs) and bacterial recognition -- 1.3.3 How do dendritic cells process bacterial antigens? -- 1.3.4 Dendritic cells as a means of bacterial invasion - sentinels or Trojan horses? -- 1.4 DENDRITIC CELLS AND THE GUT FLORA - A PARADOX? -- 1.5 CONCLUSION -- REFERENCES -- CHAPTER 2 CD1 and nonpeptide antigen recognition systems in microbial immunity -- 2.1 INTRODUCTION -- 2.2 EVOLUTION OF CD1 -- 2.3 TISSUE DISTRIBUTION OF CD1 -- 2.4 STRUCTURE OF CD1 -- 2.5 CD1 AND ANTIGEN PRESENTATION -- 2.6 CD1-RESTRICTED T LYMPHOCYTES -- 2.7 CD1 AND ANTIGEN INTERACTION -- 2.8 REQUIREMENTS FOR CD1 ANTIGEN PRESENTATION -- 2.9 INTRACELLULAR TRAFFICKING OF CD1 -- 2.10 CD1 AND MYCOBACTERIAL INFECTIONS -- 2.11 CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- CHAPTER 3 The NRAMP family: co-evolution of a host/pathogen defence system -- 3.1 INTRODUCTION -- 3.2 EARLY WORK ON Bcg -- 3.3 REVERSE GENETICS APPROACH TO CLONING Nramp1 -- 3.4 DEMONSTRATION THAT Nramp1 IS Bcg -- 3.5 EARLY STUDIES OF Nramp1 /Bcg FUNCTION -- 3.6 THE Nramp FAMILY -- 3.7 Nramp PROTEINS AND METAL CATION TRANSPORT -- 3.8 Nramp AND HUMAN SUSCEPTIBILITY TO INTRACELLULAR PATHOGENS -- 3.9 CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- PART II Evasion of humoral immunity.

CHAPTER 4 Evasion of complement system pathways by bacteria -- 4.1 INTRODUCTION -- 4.2 BIOLOGICAL FUNCTIONS OF THE COMPLEMENT SYSTEM -- 4.3 THE INVOLVEMENT OF THE COMPLEMENT SYSTEM IN ANTI-BACTERIAL DEFENCES -- 4.4 BACTERIAL EVASION OF THE COMPLEMENT SYSTEM -- 4.5 BACTERIAL CELL SURFACES AND COMPLEMENT ACTIVATION -- 4.6 BACTERIAL PROTEINASES AND ANAPHYLATOXINS -- 4.7 EVASION USING RCA PROTEINS -- 4.8 TARGETING THE LYTIC PATHWAY -- 4.9 UTILISATION OF THE COMPLEMENT SYSTEM -- 4.10 CONCLUSION -- REFERENCES -- CHAPTER 5 Bacterial immunoglobulin-evading mechanisms: Ig-degrading and Ig-binding proteins -- 5.1 INTRODUCTION -- 5.2 IgA PROTEASE-PRODUCING BACTERIA -- 5.3 CONVERGENT EVOLUTION OF IgA PROTEASES -- 5.4 SPECIFIC ADAPTATION TO HOST AND HABITAT -- 5.5 IN VIVO ACTIVITY -- 5.6 BIOLOGICAL SIGNIFICANCE OF IgA CLEAVAGE -- 5.7 ALTERNATIVE SUBSTRATES AND FUNCTIONS OF IgA PROTEASES -- 5.8 IgA1 PROTEASE FAMILY OF BACTERIAL PROTEINS -- 5.9 OTHER MICROBIAL PROTEASES WITH IMMUNOGLOBULIN-CLEAVING ACTIVITY -- 5.10 EFFECTS OF BACTERIAL GLYCOSIDASES -- 5.11 Ig-BINDING PROTEINS -- 5.12 CONCLUSION -- REFERENCES -- CHAPTER 6 Evasion of antibody responses: Bacterial phase variation -- 6.1 INTRODUCTION -- 6.2 SECTION 1: PHASE VARIATION, ITS CHARACTERISTICS AND HOW IT WORKS -- 6.2.1 The capacity to generate diversity -- 6.2.2 Stability in the presence of instability -- 6.3 SECTION 2: EXAMPLES OF THE ROLE OF PHASE VARIATION IN IMMUNE EVASION -- 6.3.1 Phase variation in Borrelia -- 6.3.2 The association between phase variation and antigenic variation -- 6.3.3 Haemophilus LPS variation in vivo -- 6.3.4 Neisseria meningitidis and Neisseria gonorrhoeae -- 6.3.5 Evasion of preexisting immune responses -- 6.4 CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- PART III Evasion of cellular immunity -- CHAPTER 7 Type III secretion and resistance to phagocytosis -- 7.1 INTRODUCTION.

7.2 TYPE III SECRETION SYSTEMS -- 7.3 SECRETION AND DELIVERY OF EFFECTOR PROTEINS BY YERSINIA AND P.AERUGINOSA -- 7.4 ROLE OF TYPE III SECRETION SYSTEMS IN BACTERIAL INFECTIONS -- 7.4.1 P.aeruginosa infections -- 7.4.2 Yersinia infections -- 7.5 INHIBITION OF PHAGOCYTOSIS -- 7.6 SUBVERSION OF HOST CELL TYROSINE KINASE SIGNALLING -- 7.6.1 The Yersinia effector YopH -- 7.6.2 Role of the YopH targets in normal cell function -- 7.6.3 Immediate early targeting of focal complex structures by YopH -- 7.7 SptP OF SALMONELLA -- 7.8 INTERFERENCE WITH HOST CELL GTPases -- 7.8.1 Yersinia effectors interfering with Rho GTPases -- 7.8.2 The Yersinia effector YopE -- 7.8.3 The Pseudomonas aeruginosa effectors Exoenzyme S and T -- 7.8.4 SptPof Salmonella -- 7.9 CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- CHAPTER 8 Bacterial superantigens and immune evasion -- 8.1 INTRODUCTION -- 8.2 FEATURES OF SUPERANTIGENS -- 8.2.1 Superantigens stimulate T cells via the Vbeta-region of TcR -- 8.3 SAGs REQUIRE MHC CLASS II FOR FUNCTION -- BACTERIAL SUPERANTIGENS -- 8.3.1 The staphylococcal and streptococcal SAG family -- 8.4 THE STAPHYLOCOCCAL GENOME AND NEW SAG-LIKE MOLECULES -- 8.5 ALLELIC VARIATION OF SAGs IN STREPTOCOCCUS PYOGENES -- 8.6 SAGs FROM OTHER BACTERIA -- 8.7 VIRAL SUPERANTIGENS -- 8.7.1 Mouse mammary tumor virus -- 8.7.2 Other viral SAGs -- 8.7.3 Cytomegalovirus (CMV) -- 8.7.4 Epstein Barr Virus (EBV) -- 8.8 SUPERANTIGENS AND DISEASE -- 8.8.1 Staphylococcal and Streptococcal SAGs in the general population -- 8.8.2 Staphylococcal food poisoning -- 8.8.3 Toxic Shock Syndrome -- 8.8.4 Scarlet Fever -- 8.8.5 Streptococcal throat and rheumatic fever -- 8.8.6 Kawasaki's disease -- 8.8.7 SAGs in autoimmune diseases -- 8.8.8 Crohn's disease associated SAG from Pseudomonas fluoresceins.

8.9 THE STRUCTURE AND FUNCTION OF THE STAPHYLOCOCCAL AND STREPTOCOCCAL SUPERANTIGENS -- 8.10 HOW DO SAGs BIND TO THE TcR? -- 8.11 SAG STIMULATION OF T CELLS -- 8.12 WHAT IS THE FUNCTION OF SAGs? -- 8.13 SAGs CAUSE PERIPHERAL T-CELL DELETION -- 8.14 CONCLUSION -- REFERENCES -- CHAPTER 9 Bacterial quorum sensing signalling molecules as immune modulators -- 9.1 INTRODUCTION -- Abbreviations and nomenclature. -- 9.2 COMPARTMENTALISED IMMUNE RESPONSES TO PATHOGENIC ORGANISMS -- 9.3 BACTERIAL QUORUM SENSING SIGNALLING MOLECULES AND IMMUNE SUPPRESSION -- 9.3.1 Quorum sensing networks in Pseudomonas aeruginosa -- 9.4 AHLs AND EUKARYOTIC CELLS -- 9.5 QSMs AND IMMUNITY TO PSEUDOMONAS AERUGINOSA -- 9.6 CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- CHAPTER 10 Microbial modulation of cytokine networks -- 10.1 INTRODUCTION -- 10.2 CYTOKINE NETWORKS -- 10.3 BACTERIA AND CYTOKINE NETWORKS -- 10.4 THE NORMAL MICROBIOTA AND THE COMMENSAL PARADOX -- 10.5 BACTERIAL EVASION OF PROTECTIVE PRO-INFLAMMATORY CYTOKINE NETWORKS -- 10.6 MICROBIAL INHIBITION OF PRO-INFLAMMATORY CYTOKINE NETWORKS -- 10.6.1 Bacterial proteins or mechanisms inhibiting cytokine synthesis -- 10.6.2 Bacterial proteinases and cytokine inactivation/activation -- 10.6.3 Bacterial receptors for cyokines -- 10.7 CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- CHAPTER 11 Enterotoxins: Adjuvants and immune inhibitors -- 11.1 INTRODUCTION -- 11.2 CHOLERA TOXIN -- 11.2.1 Introduction -- 11.2.2 Effect of CT on antigen-presenting cells -- 11.2.3 Effect of CT on T lymphocytes -- 11.2.4 Effect of CT in vivo -- 11.2.5 Clinical application of CT -- 11.2.6 Summary -- 11.3 HEAT-LABILE TOXIN -- 11.3.1 Introduction -- 11.3.2 Effect of LT on antigen-presenting cells -- 11.3.3 Effect of LT on T cells -- 11.3.4 Effect of LT in vivo -- 11.3.5 Clinical application of LT -- 11.3.6 Summary -- 11.4 SHIGA TOXINS.

11.4.1 Introduction -- 11.4.2 Effect of Stx on antigen-presenting cells -- 11.4.3 Effect of Stx on mixed mononuclear cell populations -- 11.4.4 Effect of Stx in vivo -- 11.4.5 Summary -- 11.5 CLOSTRIDIUM DIFFICILE TOXIN A AND B -- 11.5.1 Introduction -- 11.5.2 Effect of C. difficile toxins on antigen-presenting cells -- 11.5.3 Effect of C. difficile toxins in vivo -- 11.5.4 Summary -- 11.6 LYMPHOSTATIN -- 11.6.1 Introduction -- 11.6.2 Effect of lymphostatin on T cells -- 11.6.3 Effect of lymphostatin on antigen-presenting cells -- 11.6.4 Summary -- REFERENCES -- CHAPTER 12 Type III protein secretion and inhibition of NF-KappaB -- 12.1 INTRODUCTION -- 12.2 TRANSCRIPTION FACTOR NF-KappaB: THE MASTER REGULATOR OF THE HOST IMMUNE RESPONSE -- 12.3 TARGETING OF THE NF-KappaB PATHWAY BY PATHOGENIC AND NONPATHOGENIC BACTERIA IN THE GUT -- 12.4 THE YERSINIA TYPE III PROTEIN SECRETION MACHINERY: A PROTOTYPICAL TOOL FOR SUBVERTING THE PHAGOCYTE -- 12.5 SUPPRESSION OF THE HOST CELL CYTOKINE PRODUCTION -- 12.6 TRIGGERING MACROPHAGE CELL DEATH BY APOPTOSIS -- 12.7 IS YopP/J A UNIQUE BACTERIAL EFFECTOR PROTEIN? -- 12.8 CONCLUSION -- REFERENCES -- Index.
Abstract:
Comprehensive review of current research concerning how bacteria evade immunity and hence cause infection.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: