Cover image for Holographic Data Storage : From Theory to Practical Systems.
Holographic Data Storage : From Theory to Practical Systems.
Title:
Holographic Data Storage : From Theory to Practical Systems.
Author:
Curtis, Kevin.
ISBN:
9780470666548
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (442 pages)
Contents:
Holographic Data Storage: From Theory to Practical Systems -- Contents -- Foreword -- Preface -- List of Contributors -- 1 Introduction -- 1.1 The Road to Holographic Data Storage -- 1.2 Holographic Data Storage -- 1.2.1 Why Now? -- 1.2.2 Focus of the Book -- 1.2.3 Other Examples of System using the InPhase Architecture -- 1.3 Holographic Data Storage Markets -- 1.3.1 Professional Archival Storage -- 1.3.2 Consumer Applications -- 1.4 Summary -- Acknowledgements -- References -- 2 Introduction to Holographic Data Recording -- 2.1 Introduction -- 2.2 Brief History of Holography -- 2.3 Holographic Basics -- 2.3.1 Introduction -- 2.3.2 Using Holography for Data Storage -- 2.4 Volume Holograms -- 2.4.1 Introduction -- 2.4.2 Kogelnik's Coupled Wave Equations -- 2.4.3 k-Space Formalism -- 2.5 Multiplexing Techniques -- 2.5.1 Introduction -- 2.5.2 Bragg-Based Techniques -- 2.5.3 Momentum-Based Techniques -- 2.5.4 Correlation-Based Techniques -- 2.5.5 Combinations of Multiplexing Methods -- 2.6 Address Space Limitations on Holographic Densities -- 2.7 Summary -- References -- 3 Drive Architectures -- 3.1 Introduction -- 3.2 Collinear/Coaxial Architecture -- 3.2.1 Introduction -- 3.2.2 Coaxial Architecture -- 3.2.3 Collinear Architecture -- 3.3 InPhase Architecture -- 3.3.1 Introduction -- 3.3.2 Angle-Polytopic, Phase Conjugate Architecture (InPhase Architecture) -- 3.4 Monocular Architecture -- 3.4.1 Introduction -- 3.4.2 Monocular Implementation -- 3.4.3 Experimental System -- 3.4.4 Preliminary Experimental Results -- Acknowledgements -- References -- 4 Drive Components -- 4.1 Introduction -- 4.2 Laser -- 4.2.1 Initial Tapestry Drive Laser Specification -- 4.2.2 Optical System Configuration -- 4.2.3 Electronics -- 4.2.4 Mode Sensor -- 4.2.5 Power Sensor -- 4.2.6 Wavelength Sensor -- 4.2.7 Characteristics of Optical Power and Tuning Range.

4.2.8 Probability of Single-mode Operation -- 4.2.9 Laser Mode Servo -- 4.2.10 Lifetime of AR Coated Laser Diode -- 4.2.11 Future Developments -- 4.3 SLM -- 4.3.1 Introduction -- 4.3.2 Available SLM Technologies -- 4.3.3 Tapestry Drive SLM Specifications -- 4.3.4 Consumer SLM Specification -- 4.4 Image Sensor -- 4.4.1 Introduction -- 4.4.2 Tapestry Drive CMOS Sensor -- 4.4.3 Image Sensors for Consumer HDS -- 4.5 Beam Scanners -- 4.5.1 Introduction -- 4.5.2 Galvanometer -- 4.5.3 Mechanical Based Scanners -- 4.5.4 MEMs Scanners -- 4.5.5 Liquid Crystal Based Scanners -- 4.5.6 Acousto-Optic Beam Scanner -- 4.6 Isoplanatic Lenses -- 4.6.1 Introduction -- 4.6.2 Characteristics of Isoplanatic Lenses -- 4.6.3 Extremely Isoplanatic Holographic Storage Lens -- 4.6.4 Examples - Symmetric and Asymmetric Phase Conjugation -- 4.6.5 Lens Design Notes: Phase Conjugation and Extreme Isoplanatism -- 4.7 Polytopic Filter -- 4.7.1 Introduction -- 4.7.2 Current Polytopic Filter -- 4.7.3 Mechanical Filtering -- 4.7.4 Interference Filters -- 4.7.5 Thin Film Coating on Curved Surface -- Acknowledgements -- References -- 5 Materials for Holography -- 5.1 Introduction -- 5.2 Requirements for Materials for HDS -- 5.2.1 Index Change (M/#) -- 5.2.2 Dimensional Stability -- 5.2.3 Photosensitivity -- 5.2.4 Scatter -- 5.2.5 Absorption Properties -- 5.2.6 Birefringence -- 5.2.7 Optical Quality -- 5.2.8 Manufacturability -- 5.3 Candidate Material Systems -- 5.3.1 Photorefractive Materials -- 5.3.2 Photoaddressable Systems -- 5.3.3 Photochromic Systems -- 5.3.4 Photopolymer Systems -- 5.3.5 Other Materials -- 5.4 Summary -- References -- 6 Photopolymer Recording Materials -- 6.1 Introduction to Photopolymers -- 6.1.1 The Holographic Recording Process -- 6.1.2 General Characteristics of Photopolymers -- 6.1.3 Tapestry Two-Chemistry Photopolymer Materials -- 6.2 Photopolymer Design.

6.2.1 Host Matrix Systems of Photopolymers -- 6.2.2 Photoreactive System of Photopolymers -- 6.3 Holographic Recording in Photopolymers -- 6.3.1 Hologram Formation Through Diffusion in Photopolymers -- 6.3.2 General Use in a HDS System -- 6.4 Rewritable -- References -- 7 Media Manufacturing -- 7.1 Introduction -- 7.2 Tapestry Media Overview -- 7.2.1 Overview of Disk Structure -- 7.3 Media Manufacturing Process -- 7.3.1 Flow of the Manufacturing Process -- 7.3.2 Molding of Substrates -- 7.3.3 Anti-Reflection Coating -- 7.3.4 Hub and Inner Sealing -- 7.3.5 Bonding -- 7.3.6 Edge and Center Plug Sealing -- 7.3.7 Cartridging -- 7.4 Specifications for the Tapestry Media -- 7.4.1 Substrates -- 7.4.2 Recording Layer Pitch error (mrad) -- 7.4.3 Assembled Media -- 7.4.4 Media Performance and Characteristics -- 7.5 Manufacturing of Higher Performance Tapestry Media -- Acknowledgements -- References -- 8 Media Testing -- 8.1 Introduction -- 8.2 Plane Wave Material Testing -- 8.2.1 Introduction -- 8.2.2 Plane Wave Tester Set-up -- 8.2.3 Measurements and Analysis -- 8.2.4 Two Plane Wave Material Testing -- 8.3 Bulk Index Measurements -- 8.4 Scatter Tester -- 8.5 Spectrophotometers/Spectrometers -- 8.6 Scanning Index Microscope -- 8.6.1 Overview -- 8.6.2 System Layout -- 8.6.3 System Response -- 8.6.4 Experimental Example -- 8.7 Interferometers -- 8.8 Research Edge Wedge Tester -- 8.9 Defect Detection -- 8.10 Digital Testing of Media Properties -- 8.10.1 Scatter -- 8.10.2 Media Sensitivities and M/# Usage -- 8.10.3 Media Timing Tests -- 8.10.4 Media Termination Test -- 8.11 Accelerated Lifetime Testing -- 8.11.1 Introduction -- 8.11.2 Media Shelf Life Testing -- 8.11.3 Disk Archive Testing -- 8.11.4 Edge Seal Testing -- Acknowledgements -- References -- 9 Tapestry Drive Implementation -- 9.1 Introduction -- 9.2 Optical Implementation -- 9.2.1 Architecture.

9.2.2 Field Replaceable Unit (FRU) -- 9.2.3 Shutter -- 9.2.4 Optical Divider -- 9.2.5 Data Path -- 9.2.6 Reference Path -- 9.2.7 Cure System and Toaster -- 9.3 Mechanical Implementation -- 9.3.1 Loader -- 9.3.2 Cooling -- 9.3.3 Integrated Vibration Isolation System and Sway Space -- 9.4 Electronics and Firmware -- 9.4.1 Electronics -- 9.4.2 Firmware -- 9.5 Basic Build Process -- 9.5.1 Overview -- 9.5.2 Drive Alignment for Interchange -- 9.6 Defect Detection -- 9.7 Read and Write Transfer Rate Models -- 9.7.1 Simple Write Transfer Rate Model -- 9.7.2 Simple Read Transfer Rate Model -- 9.8 Summary -- Acknowledgements -- References -- 10 Data Channel Modeling -- 10.1 Introduction -- 10.2 Physical Model -- 10.2.1 Introduction -- 10.2.2 Details of Model -- 10.2.3 Quality Metrics for the Model -- 10.2.4 Implementation Details and Effects of Parameter Variations -- 10.3 Channel Identification -- 10.3.1 Introduction -- 10.3.2 Comparison of Linear and Nonlinear Channel Identification -- 10.4 Simple Channel Models -- 10.4.1 Amplitude Model -- Acknowledgements -- References -- 11 Data Channel -- 11.1 Overview -- 11.2 Data Page Formatting -- 11.2.1 Sync Marks -- 11.2.2 Headers (Bar Codes) -- 11.2.3 Reserved Blocks -- 11.2.4 Border Regions -- 11.2.5 Data Interleaving -- 11.2.6 Modulation -- 11.3 Data Channel Metrics -- 11.3.1 Signal to Noise Ratio -- 11.3.2 Centroid Calculation -- 11.3.3 Intensity Metrics -- 11.3.4 Signal to Scatter Ratio -- 11.4 Oversampled Detection -- 11.4.1 Introduction -- 11.4.2 Resampling Process -- 11.4.3 Alignment Measurement Method -- 11.4.4 Experimental Results -- 11.5 Page Level Error Correction -- 11.5.1 Log Likelihood Ratio -- 11.5.2 Page Level ECC -- 11.6 Fixed-Point Simulation of Data Channel -- 11.7 Logical Format -- 11.7.1 Introduction -- 11.7.2 Terminology -- Acknowledgements -- References -- 12 Future Data Channel Research.

12.1 Introduction -- 12.2 Homodyne Detection -- 12.2.1 Introduction -- 12.2.2 Local Oscillator Generation -- 12.2.3 Quadrature Image Pairs -- 12.2.4 Estimating Phase Difference Δφ(x, y) -- 12.2.5 Quadrature Image Combination -- 12.2.6 Quadrature Image Resampling -- 12.2.7 Coherent Noise Linearization -- 12.2.8 Simulation Results -- 12.2.9 Phase Sensitivity Issues -- 12.2.10 Local Oscillator and Hologram Alignment -- 12.2.11 Adaptive Homodyne Detection -- 12.3 Phase Quadrature Holographic Multiplexing -- 12.3.1 Phase-Quadrature Recording -- 12.3.2 Phase-Quadrature Recovery -- 12.3.3 Reserved Block Equalization -- 12.3.4 Simulation of Phase-Quadrature Decoding -- 12.3.5 Summary of Improvements -- 12.4 Other Research Directions -- Acknowledgements -- References -- 13 Writing Strategies and Disk Formatting -- 13.1 Introduction -- 13.2 Media Consumption -- 13.2.1 Introduction -- 13.2.2 Minimizing the Hologram Size -- 13.2.3 FT Lens Design -- 13.2.4 Phase Mask -- 13.2.5 Short Stacking -- 13.2.6 Skip Sorted Recording Within and Between Tracks -- 13.2.7 Angular Scheduling of Holograms in a Book -- 13.2.8 Angular Fractional Page Interleaving -- 13.3 Scheduling and Write Pre-compensation -- 13.3.1 Introduction -- 13.3.2 Basic Scheduling -- 13.3.3 Pre-cure Calibration -- 13.3.4 Write Pre-compensation Process -- 13.3.5 Thermal Effects on Schedule -- 13.4 Media Formatting -- 13.4.1 Introduction -- 13.4.2 Considerations -- 13.4.3 Format Types with Examples -- 13.4.4 Format Files -- Acknowledgements -- References -- 14 Servo and Drive Control -- 14.1 Introduction -- 14.2 Holographic System Tolerances -- 14.2.1 Introduction -- 14.2.2 Experimental and Modeled Tolerances -- 14.2.3 Tolerance Summary -- 14.2.4 Tolerance Analysis -- 14.3 Algorithms -- 14.3.1 Introduction -- 14.3.2 Theory of Thermal and Pitch Compensation -- 14.3.3 Dither Align -- 14.3.4 Wobble Servo.

14.3.5 Other Algorithms.
Abstract:
Holographic Data Storage: From Theory to Practical Systems is a primer on the design and building of a holographic data storage system covering the physics, Servo, Data Channel, Recording Materials, and optics behind holographic storage, the requirements of a functioning system, and its integration into "real-life" systems. Later chapters highlight recent developments in holographic storage which have enabled readiness for commercial implementation and discuss the general outlook for the technology, including the transition from professional to consumer markets and the possibilities for mass reproduction.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: