Cover image for Cellulose Based Composites : New Green Nanomaterials.
Cellulose Based Composites : New Green Nanomaterials.
Title:
Cellulose Based Composites : New Green Nanomaterials.
Author:
Hinestroza, Juan.
ISBN:
9783527649471
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (323 pages)
Contents:
Cellulose Based Composites -- Contents -- List of Contributors -- Preface -- Part I Cellulose Nanofiber- and Microfiber Based Composites -- Chapter 1 Cellulose-Nanofiber-Based Materials -- 1.1 Introduction -- 1.2 The Percolation and Entanglement Phenomena of Cellulose Nanofibers -- 1.3 Cellulose-Nanofiber-Based Materials -- 1.4 Extraction of Cellulose Nanofibers -- 1.5 Cellulose-Nanofiber-Based Materials for Structural and Semistructural Applications -- 1.6 Optically Transparent Materials Reinforced with Cellulose Nanofibers -- 1.7 Green Cellulose-Nanofiber-Based Materials -- 1.8 Future Prospects -- Abbreviations -- References -- Chapter 2 Fabrication and Evaluation of Cellulose-Nanofiber-Reinforced Green Composites -- 2.1 Introduction -- 2.2 Cellulose Nanofiber -- 2.3 Preparation of Cellulose Nanofibers -- 2.3.1 Chemical Extraction Method -- 2.3.2 Enzymatic Extraction Method -- 2.3.3 Physical Extraction Method -- 2.4 Fabrication of Cellulose-Nanofiber-Reinforced Composites -- 2.5 Properties of Cellulose-Nanofiber-Reinforced Composites -- 2.5.1 Mechanical Properties -- 2.5.2 Thermal Properties -- 2.5.3 Optical Properties -- 2.6 Summary -- Abbreviations -- References -- Chapter 3 Cellulose Microfibrils Isolated from Musaceae Fibrous Residues -- 3.1 Introduction -- 3.2 Vascular Bundles -- 3.3 Isolation and Purification of Cellulose Microfibrils from Vascular Bundles -- 3.4 Chemical Characterization of Cellulose Microfibrils -- 3.4.1 Monosaccharide Composition -- 3.4.2 Infrared Spectroscopy Measurements -- 3.5 Structure and Morphology of Cellulose Microfibrils -- 3.5.1 X-Ray Diffraction Analysis -- 3.5.2 Transmission Electron Microscopy -- 3.5.3 Solid-State Nuclear Magnetic Resonance Studies -- 3.6 Thermal Behavior of Cellulose Microfibrils -- 3.7 Conclusions -- 3.8 Materials and Methods -- 3.8.1 Materials.

3.8.2 Scanning Electron Microscopy -- 3.8.3 Anion-Exchange Chromatography -- 3.8.4 Attenuated Total Reflection Fourier Transform Infrared Spectroscopy -- 3.8.5 Transmission Electron Microscopy -- 3.8.6 X-Ray Diffraction -- 3.8.7 CP/MAS 13C Nuclear Magnetic Resonance -- 3.8.8 Thermogravimetric Analysis -- Acknowledgments -- Abbreviations -- References -- Chapter 4 Nanocomposites Based on Matrices Extracted from Vegetable Oils and Bacterial Cellulose -- 4.1 Introduction -- 4.2 Vegetable Oils -- 4.3 Bacterial Cellulose -- 4.4 Bacterial and Plant-Based Cellulose Nanocomposites with Polymer Matrices -- 4.5 Applications -- References -- Chapter 5 Nano- and Microfiber Composites Reinforced with Cellulose Nanocrystals -- 5.1 Introduction -- 5.2 Cellulose Nanocrystals -- 5.3 Electrospinning -- 5.4 Cellulose Nanocrystals (CNs) for the Production of Composites -- 5.5 Electrospun Nanofibers Reinforced with CNs -- 5.5.1 CNs in Fibrous Hydrophobic Matrices -- 5.5.1.1 Thermomechanical Properties of Electrospun Composite Microfibers -- 5.5.2 CNs in Poly(ε-Caprolactone) Composite Fibers -- 5.5.2.1 Surface Grafting -- 5.5.2.2 Preparation of Dispersions and Electrospinning -- 5.5.2.3 Production and Characterization of Composite Nanofibers -- 5.5.2.4 Thermomechanical Properties of PCL-Based Fiber Nanocomposites -- 5.5.3 CNs in Composite Cellulose Acetate Fibers -- 5.5.3.1 Preparation of CA Solutions and Electrospinning -- 5.5.3.2 Morphological and Thermal Characterization -- 5.5.4 CNs in Polyvinyl Alcohol Fibers -- 5.5.4.1 Preparation of PVA-CN Suspension -- 5.5.4.2 Electrospinning -- 5.5.4.3 Morphological and Chemical Characterization of CN-Loaded PVA Nanofiber Mats -- 5.5.4.4 Thermal Properties of the PVA-CN Nanofiber Composites -- 5.5.4.5 Mechanical Properties of PVA-CN Nanofiber Composites.

5.6 Applications of CN-Based Composites -- 5.7 Conclusions -- Acknowledgments -- References -- Chapter 6 Hydrolytic Degradation of Nanocomposite Fibers Electrospun from Poly(Lactic Acid)/Cellulose Nanocrystals -- 6.1 Introduction -- 6.2 Experiments -- 6.2.1 Materials -- 6.2.2 Methods and Techniques -- 6.2.2.1 Elevated Temperature Electrospinning Processing -- 6.2.2.2 Water Contact Angle Measurements -- 6.2.2.3 Hydrolytic Degradation of Electrospun Nanocomposite Fibers -- 6.2.2.4 Microscopy -- 6.2.2.5 Size Exclusion Chromatography (SEC) -- 6.2.2.6 Thermogravimetric Analysis (TGA) -- 6.3 Results and Discussion -- 6.3.1 Distribution of Cellulose Nanocrystals in the Electrospun PLA/Cellulose Nanocomposite Fibers -- 6.3.2 Thermogravimetric Analysis of Electrospun PLA/Cellulose Nanocomposite Fibers -- 6.3.3 Hydrophobicity/Hydrophilicity of Electrospun Non-woven Fabrics -- 6.3.4 Morphologies of the Electrospun PLA/Cellulose Nanocomposite Fibers during Hydrolytic Degradation -- 6.3.5 Molecular Weight Change of PLA in the Electrospun Nanocomposite Fibers during Hydrolytic Degradation -- 6.4 Conclusions -- Acknowledgment -- References -- Part II Cellulose-Fiber-Based Composites -- Chapter 7 Environment-Friendly ``Green'' Resins and Advanced Green Composites -- 7.1 Introduction -- 7.2 Experimental -- 7.2.1 Materials -- 7.2.2 Preparation of the Modified SPC -- 7.2.3 Specimen Characterization -- 7.3 Results and Discussion -- 7.3.1 Mechanical Properties of the Modified Resins -- 7.3.2 Characterization of Linen Yarns and LC-Cellulose Fibers -- 7.3.3 Characterization of Linen Yarns and LC-Cellulose-Fiber-Reinforced Composites -- 7.4 Conclusions -- Acknowledgments -- Abbreviations -- References -- Chapter 8 Toughening and Strengthening of Natural Fiber Green Composites -- 8.1 Introduction -- 8.2 Preloading Effect -- 8.2.1 Experimental.

8.2.1.1 Test Material and Fiber Tensile Specimen -- 8.2.1.2 Cyclic Loading Treatment and Tensile Fracture Test -- 8.2.1.3 Constant Loading Treatment -- 8.2.1.4 Test Materials, Fabrication, and Tensile Specimen of Green Composites -- 8.2.2 Experimental Results of Single Ramie Fibers -- 8.2.2.1 Cyclic Deformation Behavior of Single Ramie Fibers -- 8.2.2.2 Tensile Properties of Cyclic-Loaded Single Ramie Fibers -- 8.2.2.3 Tensile Properties of Constant-Load-Applied Ramie Fibers -- 8.2.2.4 Discussion -- 8.2.3 Experimental Results of Green Composites -- 8.2.3.1 Tensile Strength -- 8.2.3.2 Young's modulus -- 8.3 Effect of Alkali Treatment -- 8.3.1 Experimental -- 8.3.1.1 Materials and Alkali Treating Apparatus -- 8.3.1.2 X-ray Diffraction Measurement -- 8.3.1.3 Fabrication of Green Composites Reinforced with Alkali-Treated Ramie Plied Yarns -- 8.3.1.4 Tensile and Impact Tests -- 8.3.2 Tensile Properties of Alkali-Treated Single Ramie Fibers -- 8.3.3 Effect of NaOH Concentration on Ramie Fiber X-ray Analysis -- 8.3.3.1 X-ray Diffraction Diagram -- 8.3.3.2 Crystalline Transition Rate -- 8.3.3.3 Crystallinity Index -- 8.3.4 Relation between Mechanical Properties and Cellulose Microfibrils -- 8.3.5 Tensile Properties of Mercerized Ramie-Fiber-Reinforced Green Composites -- 8.3.6 Impact Properties of Mercerized Ramie-Fiber-Reinforced Green Composites -- 8.4 Conclusion -- References -- Chapter 9 Composites of Nanocellulose and Lignin-like Polymers -- 9.1 Introduction -- 9.2 Experimental -- 9.2.1 Materials -- 9.2.2 Preparation of TEMPO-Oxidized Nanocellulose -- 9.2.3 Enzymatic Polymerization of Phenol and Coniferyl Alcohol -- 9.2.4 Scanning Electron Microscopy (SEM) -- 9.2.5 Fourier Transform Infrared (FTIR) Spectroscopy -- 9.2.6 Differential Scanning Calorimetry (DSC) -- 9.2.7 Thermogravimetric Analysis (TGA) -- 9.2.8 Nanoindentation.

9.3 Results and Discussion -- 9.3.1 Nanocomposite Morphology -- 9.3.2 Nanocomposite's Thermal Properties -- 9.3.3 Nanocomposite's Mechanical Properties -- 9.3.4 Nanocomposite's Structure -- 9.4 Conclusions -- Acknowledgments -- References -- Chapter 10 Biodegradable Polymer Materials from Proteins Produced by the Animal Coproducts Industry: Bloodmeal -- 10.1 Introduction -- 10.2 Materials and Experimental Procedures -- 10.2.1 Materials -- 10.2.2 Specimen Preparation -- 10.2.3 Mechanical Properties and Morphology -- 10.2.4 Thermal Analysis -- 10.2.5 Moisture Testing -- 10.3 Results and Discussion -- 10.3.1 Plastics from Bloodmeal Proteins -- 10.3.2 Mechanical Properties of the Bloodmeal Plastic -- 10.3.3 Fabrication of Plastics from Blends Containing Bloodmeal Proteins -- 10.3.4 Mechanical Properties of Bloodmeal Plastics -- 10.4 Conclusions -- Acknowledgments -- References -- Part III Cellulose and Other Nanoparticles -- Chapter 11 Biocomposites Made from Bovine Bone and Crystals of Silver and Platinum -- 11.1 Introduction -- 11.2 Bovine Bone-Platinum Composites -- 11.3 Bovine Bone-Silver Composites -- 11.4 Conclusions -- Acknowledgments -- References -- Chapter 12 Bio-Inspired Synthesis of Metal Nanoparticles Using Cellulosic Substrates as Nature Templates -- 12.1 Introduction -- 12.2 Synthesis of Metal Nanoparticles Using Wood as a Template -- 12.2.1 Nanoparticles of Ruthenium Synthesized on Swietenia macrophylla (Mahogany) and Pinus ayacahuite (Pine) -- 12.2.2 Nanoparticles of Platinum Synthesized on Arce saccharum (Maple) -- 12.2.3 Formation of Silver Nanoparticles Using Bursera simaruba (L) -- 12.3 Summary -- References.

Chapter 13 Conformal Coating of Antimicrobial Silver Nanoparticles on Cationic and Anionic Cellulosic Substrates.
Abstract:
Aimed at researchers involved in this emerging field in both academia and industry, this book is unique in its focus on cellulose nanofibers, especially nano-composites, nanomoities and other plant based-resins and their composites. Despite its concise presentation, this handbook and ready reference provides a complete overview, containing such important topics as electrospinning, isolation, characterization and deposition of metallic nanoparticles.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: