Cover image for Understanding Soft Condensed Matter Via Modeling and Computation.
Understanding Soft Condensed Matter Via Modeling and Computation.
Title:
Understanding Soft Condensed Matter Via Modeling and Computation.
Author:
Hu, Wenbing.
ISBN:
9789814295598
Personal Author:
Physical Description:
1 online resource (350 pages)
Series:
Series in Soft Condensed Matter
Contents:
Contents -- Foreword -- Preface -- Introduction Role of Modeling in Soft Matter Physics -- References -- Chapter 1 Applications of Density Functional Theory in Soft Condensed Matter -- Introduction -- 1. Freezing of Spheres -- 1.1. Phenomenological results -- i) Lindemann-criterion of melting -- ii) Hansen-Verlet rule of freezing -- 1.2. Independent treatment of the different phases -- 1.3. Unifying Microscopic theories -- 1.4. Phase diagrams of simple potentials -- a) Hard spheres -- b) Plasma -- d) Yukawa-system -- e) Lennard-Jones-system -- f) Sticky hard spheres -- g) Ultrasoft interactions -- 1.5. Density Functional Theory (DFT) -- a) Basics -- b) Approximations for the density functional -- 2. Brownian Dynamics -- 2.1. Brownian dynamics (BD) -- 2.2. BD computer simulations -- 2.3. Dynamical density functional theory (DDFT) -- 2.4. An example: Crystal growth at imposed nucleation clusters -- 2.5. Hydrodynamic interactions -- 3. Rod-Like Particles -- 3.1. Statistical mechanics of rod-like particles -- 1) Fluid (disordered) phase, isotropic phase -- 2) Nematic phase -- 3) Smectic-A phase -- 4) Smectic-B phase -- 5) Columnar phase -- 6) Plastic crystal -- 7) Full crystalline phases -- 3.2. Simple models -- A) Analytical results by Onsager -- B) Computer simulations -- C) Density functional theory -- 3.3. Brownian dynamics of rod-like particles -- 3.4. "Active" (self-propelled) Brownian particles -- 4. Conclusions -- Acknowledgement -- References -- Chapter 2 Polymer Phase Separation -- 1. Introduction -- 2. Phase Behavior in the Bulk -- 2.1. Predictions of the mean-field theory -- 2.2. Estimating the Flory-Huggins parameter for simulation models -- 2.3. Simulation techniques for computing the bulk phase behavior -- 2.4. Compressible mixtures -- 3. Outlook: Interfacial Properties, Phase Boundaries in Confined Geometry, and Wetting -- References.

Chapter 3 Self-Consistent Field Theory of Block Copolymers -- 1. Introduction -- 2. Self-Consistent Field Theory of Block Copolymers -- 2.1. Polymer model and partition function -- 2.2. Chain propagators -- 2.3. Self-consistent mean-field theory -- 3. Reciprocal-Space Formulation -- 4. Applications of the Reciprocal-Space Method -- 5. Summary -- Acknowledgments -- References -- Chapter 4 Dynamic Self-Consistent Field Theories for Polymer Blends and Block Copolymers -- 1. Introduction -- 2. Basic Formalism for Dynamic SCF Theory -- 2.1. Diffusion flux -- 2.2. Convection flux -- 2.3. Flux induced by external fields -- 3. Dynamic SCF Theories in Slow Diffusion Regime -- 3.1. Formulation -- 3.2. Formation process of mesophases of block copolymer melt -- 3.3. Dynamics and non-equilibrium domain structures in thin films and near solid surfaces -- 3.4. Structural phase transitions induced by external fields -- 4. Beyond Diffusion Dynamics - Hydrodynamics, Viscoelasticity and Hybrid Techniques -- 4.1. Hydrodynamic effects on domain formation -- 4.2. Dynamic SCF with viscoelastic properties -- 4.2.1. Non-local kinetic coefficients with chain deformations -- 4.2.2. Full dynamic SCF theory with Rouse dynamics -- 4.2.3. Full dynamic SCF theory with reptation dynamics -- 4.3. Hybrid simulations with particles and fields -- 5. Conclusion -- Acknowledgments -- References -- Chapter 5 Molecular Dynamics in Crystallization of Helical Polymers: Crystal Ordering and Chirality Selection -- 1. Introduction -- 2. Our Strategies for Simulating Crystallization in Helical Polymers -- 3. Molecular Models and Simulation Methods -- 3.1 MD simulations -- 3.2 MC simulation -- 4. Crystallization of the Bare Helix -- 4.1. A primary nucleation of a single polymer in vacuo -- 4.2 Crystallization of a single polymer on a growth front.

4.3 Order-disorder transition and crystal chirality -- 4.4 Development of chiral crystal -- 5. Simulations for iPP, a Helical Polymer with Side Groups -- 5.1 Collapsing of a single iPP chain in vacuo -- 5.2 Crystallization of a single chain with definite chiral recognition -- 5.3 Crystallization and polymorph selection -- 6. Conclusions -- References -- Chapter 6 Interplay of Liquid-Liquid Demixing and Polymer Crystallization -- 1. Introduction -- 2. Theoretical Model -- 3. Simulation Techniques -- 4. Results and Discussion -- 4.1. Liquid-liquid demixing enhanced by crystallizability -- 4.2. Crystal nucleation enhanced by prior L-L demixing -- 4.3. Crystal nucleation enhanced by prior L-L demixing in the single-chain systems -- Acknowledgments -- References -- Chapter 7 Elucidation of Single Molecular Observation of a Giant DNA -- 1. Polymer Physics Aspect of DNA Conformation -- 2. Manipulation and Measurement DNA Conformation In Vitro -- 2.1 Condensing agents -- 2.2 Single molecular images -- 2.3 Limitation of traditional light scattering -- 3. All-or-none Conformation Transition of DNA -- 3.1 Discrete conformational transition of DNA -- 3.2 Chain stiffness and discrete conformational transition -- 4. Dynamics of Conformational Relaxation -- 4.1 Time dependent conformational behavior -- 4.2 Folding and unfolding kinetics -- 5. Conformational Hysteresis -- 5.1 Characterization of hysteresis -- 5.2 Thermodynamics in conformational hysteresis -- 5.3 Hysteresis under mechanical forces -- 6. Effect of Charge on DNA Conformation -- 6.1 Conditions to induce intramolecular segregation -- 6.2 Polyelectrolyte analogy -- 6.3 Phase diagram of intermolecular and intramolecular segregation -- 7. Temperature Effect of DNA Conformation -- 7.1 Temperature induced conformational change -- 7.2 Competition of smaller ions on compaction -- 8. Applications.

9. Concluding Remarks -- Acknowledgments -- References -- Chapter 8 Theoretical Modeling of Hydrogen Bonding in Macromolecular Solutions: The Combination of Quantum Mechanics and Molecular Mechanics -- 1. Introduction -- 2. Fragmentation-Based QM/MM Simulations -- 2.1. Solvent models -- 2.2. Energy-based fragmentation QM -- 2.3. Fragmentation QM/MM: Basic idea and formalisms -- 2.4. Fragmentation QM/MM simulations on poly (ethyleneoxide) polyethylene -- 3. Simulations of Solvated Peptides Using Polarizable Force Field Model -- 3.1. Fragmentation-based polarization model -- 3.2. Configurations of solvated α-conotoxin GI and its analogues -- 4. Concluding Remarks -- Acknowledgments -- References -- Chapter 9 Exotic Electrostatics: Unusual Features of Electrostatic Interactions between Macroions -- 1. Introduction -- 2. Scenery -- 2.1. Colloids, polymers and membranes: The mesoscopic scale -- 2.2. Charges: From industry to biology -- 2.3. Theoretical challenge and coarse-grained models -- 3. Length Scales in a Classical Charged System -- 4. From Mean-Field to Strong Coupling Regime -- 4.1. Weak coupling or mean-field regime -- 4.2. Strong coupling regime -- 5. Interactions between Like-Charged Surfaces -- 5.1. WC regime: Repulsion -- 5.2. SC regime: Attraction -- 6. Counterions with Salt -- 6.1. Functional integral formalism -- 6.2. Dressed counterions -- 6.3. WC dressed counterion theory -- 6.4. SC dressed counterion theory -- 7. Counterions between Randomly Charged Surfaces -- 7.1. General formalism: The replica method -- 7.2. Disorder effects in the WC regime -- 7.3. Disorder effects in the SC regime -- 8. Lessons -- Acknowledgments -- References -- Chapter 10 Computer Modeling of Liquid Crystals -- 1. Introduction -- 1.1. What is a liquid crystal? -- 1.2. Theoretical approach to understanding liquid crystals -- 1.2.1. The order parameter.

1.2.2. Liquid crystal theories -- 2. Introduction to the Computer Simulation -- 2.1. Computer simulation techniques -- 2.2. Simulation limitations -- 3. Liquid Crystal Models -- 3.1. The lattice class -- 3.1.1. General techniques -- 3.1.2. Limitations and advantages of the lattice class -- 3.1.3. Some results and applications -- 3.1.4. LL-chiral nematic model -- 3.1.5. LL-mixture models -- 3.1.6. Final comment on LL-like models -- 3.2. The Gay-Berne class -- 3.2.1. Some results and applications -- 3.2.2. Gay-Berne variant models -- 3.3. Full atomistic class -- 3.4. Conclusion -- Acknowledgments -- References -- Chapter 11 Drop Dynamics in Complex Fluids -- 1. Introduction -- 2. Partial Coalescence in Polymer Solutions -- 2.1. Experimental observations -- 2.2. Numerical simulations -- 3. Droplet Self-Assembly in Nematic Liquid Crystals -- 3.1. Experimental observations -- 3.2. Numerical simulations -- 4. Summary -- Acknowledgments -- References -- Index.
Abstract:
All living organisms consist of soft matter. For this reason alone, it is important to be able to understand and predict the structural and dynamical properties of soft materials such as polymers, surfactants, colloids, granular matter and liquids crystals. To achieve a better understanding of soft matter, three different approaches have to be integrated: experiment, theory and simulation. This book focuses on the third approach - but always in the context of the other two.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: