Cover image for Membrane and Desalination Technologies.
Membrane and Desalination Technologies.
Title:
Membrane and Desalination Technologies.
Author:
Wang, Lawrence K.
ISBN:
9781597452786
Personal Author:
Physical Description:
1 online resource (728 pages)
Series:
Handbook of Environmental Engineering, 13 ; v.v. 18

Handbook of Environmental Engineering, 13
Contents:
Membrane and Desalination Technologies -- Preface -- Contents -- Contributors -- 1: Membrane Technology: Past, Present and Future -- 1 Introduction -- 1.1 Membranes, Membrane Classifications and Membrane Configurations -- 1.2 Membrane Processes, Operation Modes and Membrane Fouling -- 2 Histrorical Developments of Membranes and Membrane Processes -- 2.1 Historical Background (Pre-1980s) -- 2.2 Reverse Osmosis -- 2.3 Ultrafiltration -- 2.4 Nanofiltration -- 2.5 Microfiltration -- 2.6 Gas Separation -- 2.7 Pervaporation -- 2.8 Membrane Bioreactors -- 3 Current Status of Membrane Technology -- 3.1 RO for Seawater and Brackish Water Desalination and Water Reclamation -- 3.1.1 Seawater and Brackish Water Desalination -- 3.1.2 Contaminated Aquifer Water and Municipal Wastewater Reclamations -- 3.2 Applications of NF, UF and MF Membranes -- 3.2.1 NF Membranes -- 3.2.2 MF and UF Membranes for Water Purifications -- 3.3 MBRs for Wastewater Treatments -- 3.4 Gas Separation -- 3.5 PV and its Hybrid Systems -- 4 Future Prospects -- 4.1 Membranes for Water, Food and Biopharmaceutical Industries -- 4.2 Membranes for Refinery, Petrochemical and Natural Gas Industries -- 4.3 Challenges for the Membrane Industry -- 4.4 Promising Membrane Systems -- 5 Concluding Remarks -- References -- 2: Preparation of Polymeric Membranes -- 1. Introduction -- 2. Membrane Classification -- 2.1. Isotropic Membranes -- 2.2. Anisotropic Membranes -- 2.3. Membrane Processes -- 2.3.1. Gas Separation and Pervaporation -- 2.3.2. Reverse Osmosis and Nanofiltration -- 2.3.3. Ultrafiltration and Microfiltration -- 2.3.4. Filter -- 3. Membrane Materials -- 3.1. Cellulose and Cellulose Acetate -- 3.2. Polysulfone -- 3.3. Polyethersulfone -- 3.4. Polyacrylonitrile -- 3.5. Polyvinylidene Fluoride -- 3.6. Polyetherimide -- 3.7. Polycarbonate -- 3.8. Polyamide -- 3.9. Polyimide.

3.10. Polyether Ether Ketones -- 3.11. Poly(phthalazine ether sulfone ketone) -- 3.12. Polyether Block Amide -- 4. Phase Inversion Membranes -- 4.1. Thermodynamics of the Polymer Solution -- 4.1.1. Thermally Induced Phase Separation -- Glass Transition -- Gelation Point -- Vitrification and Coarsening Phenomenon -- 4.1.2. Diffusion Induced Phase Separation -- Phase Diagram -- Thermodynamic Description of the Polymer Solution -- Linearized Cloud Point Curve Correlation -- Approaching Ratio -- Approaching Coagulation Ratio -- 4.2. Membrane Formation Processes -- 4.2.1. Delay Time -- 4.2.2. Gelation Time -- 4.2.3. Formation of Nascent Porous Membrane Morphologies -- 4.2.4. Vitrification of Membrane Morphology -- 4.2.5. Membrane Surface Formation of Porous Membranes -- 4.2.6. Macrovoid Formation -- Influence of Approaching Ratio on Membrane Morphology -- Influence of Membrane Thickness on Membrane Morphology -- 5. Preparation of Asymmetric Membranes by Phase Inversion Technique -- 5.1. Preparation of Hollow Fiber Membranes -- 5.1.1. Rheology of the Polymer Solution Inside the Spinneret -- 5.1.2. Nascent Hollow Fiber Membranes in the Air Gap -- Viscoelasticity and Relaxation Time -- Elongation Flow in the Air Gap -- External tensile force -- Free fall spinning -- 5.1.3. Dimension of the Hollow Fiber Membranes -- 5.2. Preparation of Flat Sheet Membranes -- 5.2.1. Hydrodynamics of the Polymer Solution at the Casting Window -- 6. Acronyms -- 7. Nomenclature -- References -- 3: Advanced Membrane Fouling Characterization in Full-Scale Reverse Osmosis Processes -- 1 Introduction -- 2 Membrane Fouling and Control -- 2.1 Factors Affecting Membrane Fouling -- 2.2 Types of Fouling in RO Processes -- 2.3 Silt Density Index -- 2.4 Pretreatment -- 2.5 Membrane Cleaning -- 2.6 Challenges -- 3 Quantification of Fouling Potential of Feed Water.

3.1 Desirable Attributes for Fouling Potential Parameter -- 3.2 An Inclusive Parameter for Fouling Potential -- 3.3 Membrane Device for Fouling Potential Measurement -- 3.4 Properties of Fouling Potential of Feed Water -- 4 Prediction of Fouling in Full-scale Reverse Osmosis Processes -- 4.1 Model Development -- 4.2 Fouling Development in a Long Membrane Channel -- 4.3 Influence of Feed Water Fouling Potential -- 4.4 Influence of Channel Length -- 4.5 Influence of Clean Membrane Resistance -- 4.6 Characteristic Pressure of a Long Membrane Channel -- 5 Membrane Fouling Quantification in Full-S cale Reverse Osmosis Processes -- 5.1 The Need for an Effective Fouling Characterization Method -- 5.2 Filtration Coefficient of a Long Membrane Channel -- 5.3 Fouling Index for a Long Membrane Channel -- 6 Conclusions -- 7 Acronyms -- 8 Nomenclature -- References -- 4: Membrane Filtration Regulations and Determination of Log Removal Value -- 1. Introduction -- 2. Membranes for the Potable Water Industry -- 3. Long Term 2 ESWTR and Stage 2 DBPR Regulations -- 3.1. Long Term 2 Enhanced Surface Water Treatment Rule -- 3.2. Stage 2 Disinfectants and Disinfection Byproducts Rule -- 3.2.1. Initial Distribution System Evaluations -- 3.2.2. Compliance Determination and Schedule -- 3.2.3. Compliance Monitoring -- 3.2.4. Significant Excursion Evaluations -- 3.3. Requirements for Membrane Filtration under the LT2ESWTR -- 3.3.1. Definition of a Membrane Filtration Process -- 3.3.2. Challenge Testing -- 3.3.3. Direct Integrity Testing -- 3.3.4. Continuous Indirect Integrity Monitoring -- 3.4. Considering Existing Membrane Facilities under the LT2ESWTR -- 3.5. Membrane Terminology Used in the Guidance Manual -- 3.6. Summary of US EPA Regulatory Framework -- 3.6.1. Compliance with the Definition of Membrane Filtration.

3.6.2. Establishment of Membrane Filtration Processś Removal Efficiency Through a Product-Specific Challenge Test and Direct I -- 3.6.3. Requirement of Periodic Direct Integrity Testing and Continuous Indirect Integrity Monitoring During Operation -- 3.6.4. Summary of Rule Requirements -- 4. Challenge Testing: Determination of LRV -- 4.1. Core Requirements for Challenge Testing -- 4.2. Test Organization Qualification -- 4.3. General Procedure for Designing a Challenge Test Protocol -- 4.4. Nondestructive Performance Testing -- 4.5. Selection of Modules for Challenge Testing -- 4.6. Small-Scale Module Testing -- 4.7. Target Organisms and Challenge Particulates -- 4.7.1. Selecting a Target Organism -- 4.7.2. Surrogate Characteristics -- 4.7.3. Surrogates for Cryptosporidium -- 4.8. Challenge Test Solutions -- 4.8.1. Test Solution Water Quality -- 4.8.2. Test Solution Volume -- 4.8.3. Test Solution Concentration -- 4.8.4. Challenge Particulate Seeding Method -- 4.9. Challenge Test Systems -- 4.9.1. Test Apparatus -- 4.9.2. Test Operating Conditions -- 4.10. Sampling -- 4.10.1. Sampling Methods -- 4.10.2. Sample Port Design and Location -- 4.10.3. Process Monitoring -- 4.10.4. Sample Plan Development -- 4.11. Analysis and Reporting of Challenge Test Results -- 4.11.1. Calculation of Removal Efficiency -- 4.11.2. Statistical Analysis -- 4.11.3. Reporting -- 4.12. Retesting of Modified Membrane Modules -- 4.13. Grandfathering Challenge Test Data from Previous Studies -- 4.14. Summary of the US EPA Required Challenge Testing -- 5. Direct Integrity Testing -- 5.1. Core Requirements of Direct Integrity Testing -- 5.2. Resolution and Sensitivity -- 5.3. Summary of the US EPA Required Direct Integrity Testing -- 6. Continuous Indirect Integrity Monitoring -- 6.1. Core Requirements of Continuous Indirect Integrity Monitoring.

6.2. Summary of the US EPA Required Continuous Indirect Integrity Monitoring -- 7. Design Example: Challenge Test Solution Design Scenario -- 8. Guidelines for Comparing Membrane Filtration with Other Water and Wastewater Treatment Processes for Giardia Cysts, Cryptosporidum Oocysts and Virus Removal -- 9. Case Study of Challenge Testing for Comparing Microfiltration and Continuously Backwashed Dual Sand Filtration Technologies -- 10. Acronyms -- 11. Nomenclature -- References -- 5: Treatment of Industrial Effluents, Municipal Wastes, and Potable Water by Membrane Bioreactors -- 1. Introduction -- 1.1. General Introduction -- 1.2. Historical Development -- 1.2.1. Nanofiltration -- 1.2.2. Reverse Osmosis -- 1.3. Physical-Chemical Pretreatment Prior to Membrane Process -- 1.3.1. Biological Pretreatment Prior to Membrane Process -- 1.4. Physical-Chemical-Biological Pretreatment Prior to Membrane Process -- 1.5. Membrane Bioreactors Research and Engineering Applications -- 2. MBR Process Description -- 2.1. Membrane Bioreactor with Membrane Module Submerged in the Bioreactor -- 2.2. Membrane Bioreactor with Membrane Module Situated Outside the Bioreactor -- 2.3. MBR System Features -- 2.4. Membrane Module Design Considerations -- 3. Process Comparison -- 3.1. Similarity -- 3.2. Dissimilarity -- 3.2.1. Reactor, MLSS, and Space Requirement Comparison -- 3.2.2. Effluent Quality Comparison -- 3.2.3. Cost Comparison and Water Recycle Considerations -- 3.2.4. Waste Treatment Consideration -- 3.2.5. Summary -- 4. Process Applications -- 4.1. Industrial Wastewater Treatment -- 4.2. Municipal Wastewater and Leachate Treatments -- 5. Practical Examples -- 5.1. Example 1: Dairy Industry -- 5.1.1. Solution -- 5.2. Example 2: Landfill Leachate Treatment -- 5.2.1. Solution -- 5.3. Example 3: Coffee Industry -- 5.3.1. Solution -- 5.4. Example 4: Cosmetics Industry.

5.4.1. Solution.
Abstract:
In this essential new volume, "Volume 13: Membrane and Desalination Technologies", a panel of expert researchers provide a wealth of information on membrane and desalination technologies. An advanced chemical and environmental engineering textbook as well as a comprehensive reference book, this volume is of high value to advanced graduate and undergraduate students, researchers, scientists, and designers of water and wastewater treatment systems. This is an essential part of the "Handbook of Environmental Engineering" series, an incredible collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. Chapters adopt the series format, employing methods of practical design and calculation illustrated by numerical examples, including pertinent cost data whenever possible, and exploring in great detail the fundamental principles of the field. "Volume 13: Membrane and Desalination Technologies" is an essential guide for researchers, highlighting the latest developments in principles of membrane technology, membrane systems planning and design, industrial and municipal waste treatments, desalination requirements, wastewater reclamation, biofiltration, and more.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: