Cover image for VLSI Circuits for Biomedical Applications.
VLSI Circuits for Biomedical Applications.
Title:
VLSI Circuits for Biomedical Applications.
Author:
Iniewski, Krzysztof.
ISBN:
9781596933187
Personal Author:
Physical Description:
1 online resource (452 pages)
Contents:
CHAPTER 8 Integrated Circuits for Neural Interfacing: Neuroelectrical Recording -- Contents -- Preface -- CHAPTER 1 Wireless Integrated Neurochemical and Neuropotential Sensing -- 1.1 Introduction -- 1.2 Neurochemical Sensing -- 1.2.1 A Review of Neurotransmitters -- 1.2.2 Electrochemical Analysis and Instrumentation -- 1.2.3 VLSI Multichannel Potentiostat -- 1.3 Neuropotential Sensing -- 1.3.1 Physiological Basis of EEG/ECoG -- 1.3.2 Interface Circuitry -- 1.4 RF Telemetry and Power Harvesting in Implanted Devices -- 1.4.1 Introduction to Inductive Coupling -- 1.4.2 Telemetry System Architecture and VLSI Design -- 1.4.3 Alternative Encoding and Transmission Schemes -- 1.5 Multimodal Electrical and Chemical Sensing -- 1.6 Summary -- References -- CHAPTER 2 Visual Cortical Neuroprosthesis: A System Approach -- 2.1 Introduction -- 2.2 System Architecture -- 2.3 Prosthesis Exterior Body Unit and Wireless Link -- 2.3.1 Neuromorphic Encoder -- 2.3.2 External Body Unit (Primary RF Unit) -- 2.3.3 RF Transformer -- 2.4 Body Implantable Unit -- 2.4.1 Bit Synchronizer -- 2.4.2 Reverse Link -- 2.4.3 Communication Protocol -- 2.5 System Prototype -- 2.6 Conclusions -- References -- CHAPTER 3 CMOS Circuits for Biomedical Implantable Devices -- 3.1. Introduction -- 3.2 Inductive Link to Deliver Power to Implants -- 3.2.1 Inductive Link Fundamentals -- 3.2.2 The Power Efficiency -- 3.2.3 Power Recovery and Voltage Regulation -- 3.3 High Data Rate Transmission Through Inductive Links -- 3.3.1 The BPSK Demodulator -- 3.3.2 The QPSK Demodulator -- 3.3.3 Validation of the Demodulator Architecture -- 3.4 Energy and Bandwidth Issues in Multi-Channel Biopotential Recording: Case Study -- 3.4.1 Micropower Low-Noise Bioamplifier -- 3.4.2 Real-Time Data Reduction and Compression -- 3.5 Summary -- References.

CHAPTER 4 Toward Self-Powered Sensors and Circuits for Biomechanical Implants -- 4.1 Introduction -- 4.2 Stress, Strain, and Fatigue Prediction -- 4.3 In Vivo Strain Measurement and Motivation for Self-Powered Sensing -- 4.4 Fundamentals of Piezoelectric Transduction and Power Delivery -- 4.4.1 Piezoelectric Basics -- 4.4.2 Piezoelectric Modeling -- 4.4.3 Orthopaedic Applications -- 4.5 Sub-Microwatt Piezo-Powered VLSI Circuits -- 4.5.1 Floating-Gate Transistors -- 4.5.2 Floating-Gate Injector and Its Mathematical Model -- 4.5.3 CMOS Current References -- 4.5.4 Floating-Gate Current References -- 4.6 Design and Calibration of a Complete Floating-Gate Sensor Array -- 4.7 Conclusions -- References -- CHAPTER 5 CMOS Circuits for Wireless Medical Applications -- 5.1 Introduction -- 5.2 Spectrum Regulations for Medical Use -- 5.3 Integrated Receiver Architectures -- 5.4 Integrated Transmit Architectures -- 5.5 Radio Architecture Selection -- 5.6 System Budget Calculations -- 5.7 Low-Noise Amplifiers -- 5.8 Mixers -- 5.9 Polyphase Filter -- 5.10 Power Amplifier (PA) -- 5.11 Phase Locked Loop (PLL) -- 5.12 Conclusions -- References -- CHAPTER 6 Error-Correcting Codes for In Vivo RF Wireless Links -- 6.1 Introduction -- 6.2 In Vivo Human Body Channel Modeling -- 6.3 Power Dissipation Model for the RF Link with Error-Correcting Codes -- 6.4 Encoder Implementations and Power Savings for ECC -- 6.5 Conclusions -- References -- CHAPTER 7 Microneedles: A Solid-State Interface with the Human Body -- 7.1 Introduction -- 7.1.1 The Structure of the Skin -- 7.1.2 Categories of Microneedles and Probes -- 7.2 Fabrication Methods for Hollow Out-of-Plane Microneedles -- 7.2.1 Fabrication of Metal Microneedles -- 7.2.2 Fabrication of Silicon Microneedles -- 7.2.3 Fabrication of Polymer Microneedles -- 7.2.4 Further Fabrication Methods for Microneedles.

7.3 Applications for Microneedles -- 7.3.1 Drug Delivery Through Microneedles -- 7.3.2 Biosensing Using Microneedles -- 7.4 Conclusions and Outlook -- 7.4.1 The State of the Art of Microneedle Research -- 7.4.2 Future Research Directions -- References -- CHAPTER 8 Integrated Circuits for Neural Interfacing: Neuroelectrical Recording -- 8.1 Introduction to Neural Recording -- 8.2 The Nature of Neural Signals -- 8.3 Neural Signal Amplification -- 8.3.1 Design Requirements -- 8.3.2 Circuit Architecture and Design Techniques -- 8.3.3 Noise vs. Layout Area -- References -- CHAPTER 9 Integrated Circuits for Neural Interfacing: Neurochemical Recording -- 9.1 Introduction to Neurochemical Recording -- 9.2 Chemical Monitoring -- 9.3 Sensor and Circuit Technologies -- 9.3.1 Neurochemical Sensing Probes -- 9.3.2 Neurochemical Sensing Interface Circuitry -- References -- CHAPTER 10 Integrated Circuits for Neural Interfacing: Neural Stimulation -- 10.1 Introduction to Neural Stimulation -- 10.2 Electrode Configuration and Tissue Volume Conductor -- 10.3 Electrode-Electrolyte Interface -- 10.4 Efficacy of Neural Stimulation -- 10.5 Stimulus Generator Architecture -- 10.6 Stimulation Front-End Circuits -- References -- CHAPTER 11 Circuits for Implantable Neural Recording and Stimulation -- 11.1 Introduction -- 11.2 Neurophysiology and the Action Potential -- 11.3 Electrodes -- 11.4 The Tripolar Cuff Model and Tripolar Amplifier Configurations -- 11.5 Bioamplifier Circuits -- 11.5.1 Clock-Based Techniques -- 11.5.2 Continuous-Time Techniques -- 11.6 Stimulation and Circuits -- 11.6.1 Modes of Stimulation -- 11.6.2 Types of Stimulation Waveforms -- 11.6.3 Stimulator Failure Protection Techniques -- 11.6.4 Stimulator Output Stage Configurations Utilizing Blocking Capacitors -- 11.6.5 Method to Reduce the Blocking Capacitor Value.

11.6.6 Stimulator Current Generator Circuits -- 11.7 Conclusion -- References -- CHAPTER 12 Neuromimetic Integrated Circuits -- 12.1 Introduction and Application Domain -- 12.2 Neuron Models for Different Computation Levels of SNNs -- 12.2.1 Cell Level -- 12.2.2 Network Level -- 12.3 State of the Art of Hardware-Based SNN -- 12.3.1 System Constraints and Computation Distribution -- 12.3.2 Existing Solutions -- 12.4 Criteria for Design Strategies of Neuromimetic ICs -- 12.4.1 Specific or Generic Mathematical Operators -- 12.4.2 Monosynapses or Multisynapses -- 12.4.3 IC Flexibility vs. Network Specifications -- 12.4.4 CMOS or BICMOS Technology -- 12.4.5 IP-Based Design -- 12.5 Neuromimetic ICs: Example of a Series of ASICs -- 12.5.1 A Subthreshold CMOS ASIC with Fixed Model Parameters -- 12.5.2 A BICMOS ASIC with Fixed Model Parameters -- 12.5.3 A BICMOS ASIC with Tunable Model Parameters -- 12.5.4 A BICMOS ASIC with Tunable Model Parameters and Multisynapses -- 12.6 Conclusion and Perspectives -- References -- CHAPTER 13 Circuits for Amperometric Electrochemical Sensors -- 13.1 Introduction -- 13.2 Electrochemical Sensors -- 13.2.1 Electrochemistry and the Electrode Process -- 13.2.2 Electrochemical Cell -- 13.2.3 Electrochemical Sensors -- 13.2.4 Three-Electrode Measurement System -- 13.3 Potentiostat -- 13.3.1 Potential Control Configurations -- 13.3.2 Current Measurement Approaches -- 13.4 Design Issues in Advanced CMOS Processes -- 13.4.1 Generating the Input Drive Voltage -- 13.5 Electrical Equivalent Circuit Modeling -- 13.5.1 Mathematical Circuit Modeling -- 13.5.2 Numerical Modeling -- 13.6 Conclusions -- References -- CHAPTER 14 ADC Circuits for Biomedical Applications -- 14.1 Introduction -- 14.2 A Second-Order ΣΔ Modulator (ΣΔM) with 80 dB SNDR and 83 dB DR Operating Down to 0.9 V -- 14.2.1 Introduction.

14.2.2 Second-Order Sigma-Delta Architecture -- 14.2.3 Circuit Implementation -- 14.2.4 Integrated Prototypes and Measured Results -- 14.3 A Calibration-Free Low-Power and Low-Area 1.2 V 14-b Resolution and 80 kHz BW Two-Stage Algorithmic ADC -- 14.3.1 Introduction -- 14.3.2 Architecture Description and Timing -- 14.3.3 OTA and Comparators -- 14.3.4 The Mismatch-Insensitive Multiplying-DAC -- 14.3.5 Circuit Implementation and Simulation Results -- 14.4 Conclusions -- References -- CHAPTER 15 CMOS Circuit Design for Label-Free Medical Diagnostics -- 15.1 Introduction -- 15.2 Label-Free Molecular Detection with Electrochemical Capacitors -- 15.2.1 The Ideal-Capacitance Model -- 15.2.2 The Constant Phase Element Model -- 15.3 Electrodes Bio-Functionalization -- 15.3.1 DNA Probe Immobilization -- 15.3.2 DNA Target Hybridization -- 15.3.3 DNA Detection -- 15.4 Chip Design for Capacitance Measurements -- 15.4.1 Charge-Based Capacitance Measurements -- 15.4.2 Frequency to Capacitance Measurements Technique -- 15.5 Biochip Application to DNA -- 15.6 Discussion on Results: Analysis and Future Perspectives -- 15.6.1 Frequency Analysis of Electrical Measurements -- 15.6.2 Discussion on Biochemical Issues -- 15.7 Conclusions and Perspectives -- References -- CHAPTER 16 Silicon-Based Microfluidic Systems for Nucleic Acid Analysis -- 16.1 From Tubes to Chips -- 16.2 Nucleic Acid Extraction -- 16.3 Nucleic Acid Amplification -- 16.4 Nucleic Acid Detection -- 16.5 Discussion -- 16.6 Conclusion -- References -- CHAPTER 17 Architectural Optimizations for Digital Microfluidic Biochips -- 17.1 Introduction -- 17.2 Challenges -- 17.3 Testing and Reconfiguration Strategies -- 17.3.1 Testing Technique Based on Partitioning the Grid for Multiple Sources and Sinks -- 17.3.2 Reconfiguration Techniques for Fault Isolation.

17.4 Scheduling and Resource Allocation for Pin-Constrained Biochips.
Abstract:
Supported with over 280 illustrations and over 160 equations, the book offers cutting-edge guidance on designing integrated circuits for wireless biosensing, body implants, biosensing interfaces, and molecular biology. You discover innovative design techniques and novel materials to help you achieve higher levels circuit and system performance.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: