Cover image for Innovation in Wind Turbine Design.
Innovation in Wind Turbine Design.
Title:
Innovation in Wind Turbine Design.
Author:
Jamieson, Peter.
ISBN:
9781119975458
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (318 pages)
Contents:
Innovation in Wind Turbine Design -- Contents -- Acknowledgements -- Foreword -- Preface -- Introduction -- 0.1 Why Innovation? -- 0.2 The Challenge of Wind -- 0.3 The Specification of a Modern Wind Turbine -- 0.4 The Variability of the Wind -- 0.5 Commercial Wind Technology -- 0.6 Basis of Wind Technology Evaluation -- 0.6.1 Standard Design as Baseline -- 0.6.2 Basis of Technological Advantage -- 0.6.3 Security of Claimed Power Performance -- 0.6.4 Impact of Proposed Innovation -- References -- Part I DESIGN BACKGROUND -- 1 Rotor Aerodynamic Theory -- 1.1 Introduction -- 1.2 Aerodynamic Lift -- 1.3 The Actuator Disc -- 1.4 Open Flow Actuator Disc -- 1.4.1 Axial Induction -- 1.4.2 Momentum -- 1.5 Generalised Actuator Disc Theory -- 1.6 The Force on a Diffuser -- 1.7 Generalised Actuator Disc Theory and Realistic Diffuser Design -- 1.8 Why a Rotor? -- 1.9 Basic Operation of a Rotor -- 1.10 Blade Element Momentum Theory -- 1.10.1 Momentum Equations -- 1.10.2 Blade Element Equations -- 1.11 Optimum Rotor Theory -- 1.11.1 The Power Coefficient, Cp -- 1.11.2 Thrust Coefficient -- 1.11.3 Out-of-Plane Bending Moment Coefficient -- 1.12 Generalised BEM -- 1.13 Limitations of Actuator Disc and BEM Theory -- 1.13.1 Actuator Disc Limitations -- 1.13.2 Wake Rotation and Tip Effect -- 1.13.3 Optimum Rotor Theory -- 1.13.4 Skewed Flow -- 1.13.5 Summary -- References -- 2 Rotor Aerodynamic Design -- 2.1 Optimum Rotors and Solidity -- 2.2 Rotor Solidity and Ideal Variable Speed Operation -- 2.3 Solidity and Loads -- 2.4 Aerofoil Design Development -- 2.5 Sensitivity of Aerodynamic Performance to Planform Shape -- 2.6 Aerofoil Design Specification -- References -- 3 Rotor Structural Interactions -- 3.1 Blade Design in General -- 3.2 Basics of Blade Structure -- 3.3 Simplified Cap Spar Analyses -- 3.3.1 Design for Minimum Mass with Prescribed Deflection.

3.3.2 Design for Fatigue Strength: No Deflection Limits -- 3.4 The Effective t/c Ratio of Aerofoil Sections -- 3.5 Blade Design Studies: Example of a Parametric Analysis -- 3.6 Industrial Blade Technology -- 3.6.1 Design -- 3.6.2 Manufacturing -- 3.6.3 Design Development -- References -- 4 Upscaling of Wind Turbine Systems -- 4.1 Introduction: Size and Size Limits -- 4.2 The 'Square-Cube' Law -- 4.3 Scaling Fundamentals -- 4.4 Similarity Rules for Wind Turbine Systems -- 4.4.1 Tip Speed -- 4.4.2 Aerodynamic Moment Scaling -- 4.4.3 Bending Section Modulus Scaling -- 4.4.4 Tension Section Scaling -- 4.4.5 Aeroelastic Stability -- 4.4.6 Self Weight Loads Scaling -- 4.4.7 Blade (Tip) Deflection Scaling -- 4.4.8 More Subtle Scaling Effects and Implications -- 4.4.9 Gearbox Scaling -- 4.4.10 Support Structure Scaling -- 4.4.11 Power/Energy Scaling -- 4.4.12 Electrical Systems Scaling -- 4.4.13 Control Systems Scaling -- 4.4.14 Scaling Summary -- 4.5 Analysis of Commercial Data -- 4.5.1 Blade Mass Scaling -- 4.5.2 Shaft Mass Scaling -- 4.5.3 Scaling of Nacelle Mass and Tower Top Mass -- 4.5.4 Tower Top Mass -- 4.5.5 Tower Scaling -- 4.5.6 Gearbox Scaling -- 4.6 Upscaling of VAWTs -- 4.7 Rated Tip Speed -- 4.8 Upscaling of Loads -- 4.9 Violating Similarity -- 4.10 Cost Models -- 4.11 Scaling Conclusions -- References -- 5 Wind Energy Conversion Concepts -- References -- 6 Drive Train Design -- 6.1 Introduction -- 6.2 Definitions -- 6.3 Objectives of Drive Train Innovation -- 6.4 Drive Train Technology Maps -- 6.5 Direct Drive -- 6.6 Hybrid Systems -- 6.7 Hydraulic Transmission -- 6.8 Efficiency of Drive Train Components -- 6.8.1 Introduction -- 6.8.2 Efficiency Over the Operational Range -- 6.8.3 Gearbox Efficiency -- 6.8.4 Generator Efficiency -- 6.8.5 Converter Efficiency -- 6.8.6 Transformer Efficiency -- 6.8.7 Fluid Coupling Efficiency.

6.9 The Optimum Drive Train -- 6.10 Innovative Concepts for Power Take-Off -- References -- 7 Offshore Wind Turbines -- 7.1 Design for Offshore -- 7.2 High Speed Rotor -- 7.2.1 Design Logic -- 7.2.2 Speed Limit -- 7.2.3 Rotor Configurations -- 7.2.4 Design Comparisons -- 7.3 'Simpler' Offshore Turbines -- 7.4 Offshore Floating Turbine Systems -- References -- 8 Technology Trends Summary -- 8.1 Evolution -- 8.2 Consensus in Blade Number and Operational Concept -- 8.3 Divergence in Drive Train Concepts -- 8.4 Future Wind Technology -- 8.4.1 Introduction -- 8.4.2 Airborne Systems -- 8.4.3 New System Concepts -- References -- Part II TECHNOLOGY EVALUATION -- 9 Cost of Energy -- 9.1 The Approach to Cost of Energy -- 9.2 Energy: The Power Curve -- 9.3 Energy: Efficiency, Reliability, Availability -- 9.3.1 Efficiency -- 9.3.2 Reliability -- 9.3.3 Availability -- 9.4 Capital Costs -- 9.5 Operation and Maintenance -- 9.6 Overall Cost Split -- 9.7 Scaling Impact on Cost -- 9.8 Impact of Loads (Site Class) -- References -- 10 Evaluation Methodology -- 10.1 Key Evaluation Issues -- 10.2 Fatal Flaw Analysis -- 10.3 Power Performance -- 10.3.1 The Betz Limit -- 10.3.2 The Pressure Difference across a Wind Turbine -- 10.3.3 Total Energy in the Flow -- 10.4 Drive Train Torque -- 10.5 Representative Baseline -- 10.6 Design Loads Comparison -- 10.7 Evaluation Example: Optimum Rated Power of a Wind Turbine -- 10.8 Evaluation Example: The Carter Wind Turbine and Structural Flexibility -- 10.9 Evaluation Example: Concept Design Optimisation Study -- References -- Part III DESIGN THEMES -- 11 Optimum Blade Number -- 11.1 Energy Capture Comparisons -- 11.2 Blade Design Issues -- 11.3 Operational and System Design Issues -- 11.4 Multi Bladed Rotors -- References -- 12 Pitch versus Stall -- 12.1 Stall Regulation -- 12.2 Pitch Regulation -- 12.3 Fatigue Loading Issues.

12.4 Power Quality and Network Demands -- 12.4.1 Grid Code Requirements and Implications for Wind Turbine Design -- References -- 13 HAWT or VAWT? -- 13.1 Introduction -- 13.2 VAWT Aerodynamics -- 13.3 Power Performance and Energy Capture -- 13.4 Drive Train Torque -- 13.5 Niche Applications for VAWTs -- 13.6 Status of VAWT Design -- 13.6.1 Problems -- 13.6.2 Solutions? -- References -- 14 Free Yaw -- 14.1 Yaw System COE Value -- 14.2 Yaw Dynamics -- 14.3 Yaw Damping -- 14.4 Main Power Transmission -- 14.5 Operational Experience of Free Yaw Wind Turbines -- 14.6 Summary View -- References -- 15 Multi Rotor Systems -- 15.1 Introduction -- 15.2 Standardisation Benefit and Concept Developments -- 15.3 Operational Systems -- 15.4 Scaling Economics -- 15.5 History Overview -- 15.6 Aerodynamic Performance of Multi Rotor Arrays -- 15.7 Recent Multi Rotor Concepts -- 15.8 Multi Rotor Conclusions -- References -- 16 Design Themes Summary -- Part IV INNOVATIVE TECHNOLOGY EXAMPLES -- 17 Adaptable Rotor Concepts -- 17.1 Rotor Operational Demands -- 17.2 Control of Wind Turbines -- 17.3 Adaptable Rotors -- 17.4 The Coning Rotor -- 17.4.1 Concept -- 17.4.2 Coning Rotor: Outline Evaluation - Energy Capture -- 17.4.3 Coning Rotor: Outline Evaluation - Loads -- 17.4.4 Concept Overview -- 17.5 Variable Diameter Rotor -- References -- 18 A Shrouded Rotor -- References -- 19 The Gamesa G10X Drive Train -- 20 Gyroscopic Torque Transmission -- References -- 21 The Norsetek Rotor Design -- References -- 22 Siemens Blade Technology -- 23 Stall Induced Vibrations -- References -- 24 Magnetic Gearing and Pseudo-Direct Drive -- 24.1 Magnetic Gearing Technology -- 24.2 Pseudo-Direct Drive Technology -- References -- 25 Summary and Concluding Comments -- Index.
Abstract:
Innovation in Wind Turbine Design addresses the fundamentals of design, the reasons behind design choices, and describes the methodology for evaluating innovative systems and components. Always referencing a state of the art system for comparison, Jamieson discusses the basics of wind turbine theory and design, as well as how to apply existing engineering knowledge to further advance the technology, enabling the reader to gain a thorough understanding of current technology before assessing where it can go in the future. Innovation in Wind Turbine Design is divided into four main sections covering design background, technology evaluation, design themes and innovative technology examples: Section 1 reviews aerodynamic theory and the optimization of rotor design, discusses wind energy conversion systems, drive trains, scaling issues, offshore wind turbines, and concludes with an overview of technology trends with a glimpse of possible future technology Section 2 comprises a global view of the multitude of design options for wind turbine systems and develops evaluation methodology, including cost of energy assessment with some specific examples Section 3 discusses recurrent design themes such as blade number, pitch or stall, horizontal or vertical axis Section 4 considers examples of innovative technology with case studies from real-life commercial clients. This groundbreaking synopsis of the state of the art in wind turbine design is must-have reading for professional wind engineers, power engineers and turbine designers, as well as consultants, researchers and academics working in renewable energy.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Electronic Access:
Click to View
Holds: Copies: