Cover image for Advanced Dynamics : Rigid Body, Multibody, and Aerospace Applications.
Advanced Dynamics : Rigid Body, Multibody, and Aerospace Applications.
Title:
Advanced Dynamics : Rigid Body, Multibody, and Aerospace Applications.
Author:
Jazar, Reza N.
ISBN:
9780470892114
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (1344 pages)
Contents:
Advanced Dynamics -- Contents -- Preface -- Part I Fundamentals -- 1 Fundamentals of Kinematics -- 1.1 Coordinate Frame and Position Vector -- 1.1.1 Triad -- 1.1.2 Coordinate Frame and Position Vector -- 1.1.3 Vector Definition -- 1.2 Vector Algebra -- 1.2.1 Vector Addition -- 1.2.2 Vector Multiplication -- 1.2.3 Index Notation -- 1.3 Orthogonal Coordinate Frames -- 1.3.1 Orthogonality Condition -- 1.3.2 Unit Vector -- 1.3.3 Direction of Unit Vectors -- 1.4 Differential Geometry -- 1.4.1 Space Curve -- 1.4.2 Surface and Plane -- 1.5 Motion Path Kinematics -- 1.5.1 Vector Function and Derivative -- 1.5.2 Velocity and Acceleration -- 1.5.3 Natural Coordinate Frame -- 1.6 Fields -- 1.6.1 Surface and Orthogonal Mesh -- 1.6.2 Scalar Field and Derivative -- 1.6.3 Vector Field and Derivative -- Key Symbols -- Exercises -- 2 Fundamentals of Dynamics -- 2.1 Laws of Motion -- 2.2 Equation of Motion -- 2.2.1 Force and Moment -- 2.2.2 Motion Equation -- 2.3 Special Solutions -- 2.3.1 Force Is a Function of Time, F = F(t) -- 2.3.2 Force Is a Function of Position, F = F(x) -- 2.3.3 Elliptic Functions -- 2.3.4 Force Is a Function of Velocity, F = F(v) -- 2.4 Spatial and Temporal Integrals -- 2.4.1 Spatial Integral: Work and Energy -- 2.4.2 Temporal Integral: Impulse and Momentum -- 2.5 Application of Dynamics -- 2.5.1 Modeling -- 2.5.2 Equations of Motion -- 2.5.3 Dynamic Behavior and Methods of Solution -- 2.5.4 Parameter Adjustment -- Key Symbols -- Exercises -- Part II Geometric Kinematics -- 3 Coordinate Systems -- 3.1 Cartesian Coordinate System -- 3.2 Cylindrical Coordinate System -- 3.3 Spherical Coordinate System -- 3.4 Nonorthogonal Coordinate Frames -- 3.4.1 Reciprocal Base Vectors -- 3.4.2 Reciprocal Coordinate Frame -- 3.4.3 Inner and Outer Vector Product -- 3.4.4 Kinematics in Oblique Coordinate Frames -- 3.5 Curvilinear Coordinate System.

3.5.1 Principal and Reciprocal Base Vectors -- 3.5.2 Principal-Reciprocal Transformation -- 3.5.3 Curvilinear Geometry -- 3.5.4 Curvilinear Kinematics -- 3.5.5 Kinematics in Curvilinear Coordinates -- Key Symbols -- Exercises -- 4 Rotation Kinematics -- 4.1 Rotation About Global Cartesian Axes -- 4.2 Successive Rotations About Global Axes -- 4.3 Global Roll-Pitch-Yaw Angles -- 4.4 Rotation About Local Cartesian Axes -- 4.5 Successive Rotations About Local Axes -- 4.6 Euler Angles -- 4.7 Local Roll-Pitch-Yaw Angles -- 4.8 Local versus Global Rotation -- 4.9 General Rotation -- 4.10 Active and Passive Rotations -- 4.11 Rotation of Rotated Body -- Key Symbols -- Exercises -- 5 Orientation Kinematics -- 5.1 Axis-Angle Rotation -- 5.2 Euler Parameters -- 5.3 Quaternion -- 5.4 Spinors and Rotators -- 5.5 Problems in Representing Rotations -- 5.5.1 Rotation Matrix -- 5.5.2 Axis-Angle -- 5.5.3 Euler Angles -- 5.5.4 Quaternion and Euler Parameters -- 5.6 Composition and Decomposition of Rotations -- 5.6.1 Composition of Rotations -- 5.6.2 Decomposition of Rotations -- Key Symbols -- Exercises -- 6 Motion Kinematics -- 6.1 Rigid-Body Motion -- 6.2 Homogeneous Transformation -- 6.3 Inverse and Reverse Homogeneous Transformation -- 6.4 Compound Homogeneous Transformation -- 6.5 Screw Motion -- 6.6 Inverse Screw -- 6.7 Compound Screw Transformation -- 6.8 Plücker Line Coordinate -- 6.9 Geometry of Plane and Line -- 6.9.1 Moment -- 6.9.2 Angle and Distance -- 6.9.3 Plane and Line -- 6.10 Screw and Plücker Coordinate -- Key Symbols -- Exercises -- 7 Multibody Kinematics -- 7.1 Multibody Connection -- 7.2 Denavit-Hartenberg Rule -- 7.3 Forward Kinematics -- 7.4 Assembling Kinematics -- 7.5 Order-Free Rotation -- 7.6 Order-Free Transformation -- 7.7 Forward Kinematics by Screw -- 7.8 Caster Theory in Vehicles -- 7.9 Inverse Kinematics -- Key Symbols -- Exercises.

Part III Derivative Kinematics -- 8 Velocity Kinematics -- 8.1 Angular Velocity -- 8.2 Time Derivative and Coordinate Frames -- 8.3 Multibody Velocity -- 8.4 Velocity Transformation Matrix -- 8.5 Derivative of a Homogeneous Transformation Matrix -- 8.6 Multibody Velocity -- 8.7 Forward-Velocity Kinematics -- 8.8 Jacobian-Generating Vector -- 8.9 Inverse-Velocity Kinematics -- Key Symbols -- Exercises -- 9 Acceleration Kinematics -- 9.1 Angular Acceleration -- 9.2 Second Derivative and Coordinate Frames -- 9.3 Multibody Acceleration -- 9.4 Particle Acceleration -- 9.5 Mixed Double Derivative -- 9.6 Acceleration Transformation Matrix -- 9.7 Forward-Acceleration Kinematics -- 9.8 Inverse-Acceleration Kinematics -- Key Symbols -- Exercises -- 10 Constraints -- 10.1 Homogeneity and Isotropy -- 10.2 Describing Space -- 10.2.1 Configuration Space -- 10.2.2 Event Space -- 10.2.3 State Space -- 10.2.4 State-Time Space -- 10.2.5 Kinematic Spaces -- 10.3 Holonomic Constraint -- 10.4 Generalized Coordinate -- 10.5 Constraint Force -- 10.6 Virtual and Actual Works -- 10.7 Nonholonomic Constraint -- 10.7.1 Nonintegrable Constraint -- 10.7.2 Inequality Constraint -- 10.8 Differential Constraint -- 10.9 Generalized Mechanics -- 10.10 Integral of Motion -- 10.11 Methods of Dynamics -- 10.11.1 Lagrange Method -- 10.11.2 Gauss Method -- 10.11.3 Hamilton Method -- 10.11.4 Gibbs-Appell Method -- 10.11.5 Kane Method -- 10.11.6 Nielsen Method -- Key Symbols -- Exercises -- Part IV Dynamics -- 11 Rigid Body and Mass Moment -- 11.1 Rigid Body -- 11.2 Elements of the Mass Moment Matrix -- 11.3 Transformation of Mass Moment Matrix -- 11.4 Principal Mass Moments -- Key Symbols -- Exercises -- 12 Rigid-Body Dynamics -- 12.1 Rigid-Body Rotational Cartesian Dynamics -- 12.2 Rigid-Body Rotational Eulerian Dynamics -- 12.3 Rigid-Body Translational Dynamics.

12.4 Classical Problems of Rigid Bodies -- 12.4.1 Torque-Free Motion -- 12.4.2 Spherical Torque-Free Rigid Body -- 12.4.3 Axisymmetric Torque-Free Rigid Body -- 12.4.4 Asymmetric Torque-Free Rigid Body -- 12.4.5 General Motion -- 12.5 Multibody Dynamics -- 12.6 Recursive Multibody Dynamics -- Key Symbols -- Exercises -- 13 Lagrange Dynamics -- 13.1 Lagrange Form of Newton Equations -- 13.2 Lagrange Equation and Potential Force -- 13.3 Variational Dynamics -- 13.4 Hamilton Principle -- 13.5 Lagrange Equation and Constraints -- 13.6 Conservation Laws -- 13.6.1 Conservation of Energy -- 13.6.2 Conservation of Momentum -- 13.7 Generalized Coordinate System -- 13.8 Multibody Lagrangian Dynamics -- Key Symbols -- Exercises -- References -- A Global Frame Triple Rotation -- B Local Frame Triple Rotation -- C Principal Central Screw Triple Combination -- D Industrial Link DH Matrices -- E Trigonometric Formula -- Index.
Abstract:
A thorough understanding of rigid body dynamics as it relates to modern mechanical and aerospace systems requires engineers to be well versed in a variety of disciplines. This book offers an all-encompassing view by interconnecting a multitude of key areas in the study of rigid body dynamics, including classical mechanics, spacecraft dynamics, and multibody dynamics. In a clear, straightforward style ideal for learners at any level, Advanced Dynamics builds a solid fundamental base by first providing an in-depth review of kinematics and basic dynamics before ultimately moving forward to tackle advanced subject areas such as rigid body and Lagrangian dynamics. In addition, Advanced Dynamics: Is the only book that bridges the gap between rigid body, multibody, and spacecraft dynamics for graduate students and specialists in mechanical and aerospace engineering Contains coverage of special applications that highlight the different aspects of dynamics and enhances understanding of advanced systems across all related disciplines Presents material using the author's own theory of differentiation in different coordinate frames, which allows for better understanding and application by students and professionals Both a refresher and a professional resource, Advanced Dynamics leads readers on a rewarding educational journey that will allow them to expand the scope of their engineering acumen as they apply a wide range of applications across many different engineering disciplines.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: