Cover image for Characterization of Polymer Blends : Miscibility, Morphology and Interfaces.
Characterization of Polymer Blends : Miscibility, Morphology and Interfaces.
Title:
Characterization of Polymer Blends : Miscibility, Morphology and Interfaces.
Author:
Thomas, Sabu.
ISBN:
9783527645626
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (971 pages)
Contents:
Characterization of Polymer Blends: Miscibility, Morphology and Interfaces -- Contents -- List of Contributors -- 1 Polymer Blends: State of the Art, New Challenges, and Opportunities -- 1.1 Introduction -- 1.2 Miscible and Immiscible Polymer Blends -- 1.3 Compatibility in Polymer Blends -- 1.4 Topics Covered in this Book -- References -- 2 Miscible Blends Based on Biodegradable Polymers -- 2.1 Introduction -- 2.2 Thermodynamic Approach to the Miscibility of Polymer Blends -- 2.2.1 Introduction -- 2.2.2 Molecular Size and Entropy -- 2.2.3 The Regular Solution -- 2.2.4 The Flory-Huggins Model -- 2.2.5 The Hildebrand Approach -- 2.2.6 Extension of the Flory-Huggins Model to Systems with Specific Interactions -- 2.2.7 The Dependence of Miscibility on Blend Composition and Temperature -- 2.2.8 The Painter-Coleman Association Model (PCAM) -- 2.2.9 Analysis of the Miscibility Using Molecular Modeling Calculations -- 2.2.10 Classification of Miscible Systems -- 2.2.10.1 Entropically Driven Miscible Systems -- 2.2.10.2 Enthalpically Driven Miscible Systems -- 2.3 Revision of Polymer Blends Based on Biodegradable Polyesters -- 2.3.1 Blends Containing Poly(lactic acid) or Poly(lactide) (PLA) -- 2.3.1.1 PLA/PLA Blends -- 2.3.1.2 PLA Blended with Poly(ethylene glycol) (PEG) and Poly(ethylene oxide) (PEO) -- 2.3.1.3 PLA Blended with Poly(vinyl alcohol) (PVA) and Poly(vinyl acetate) -- 2.3.1.4 PLA/Poly(e-caprolactone) (PCL) Blends -- 2.3.1.5 PLA/Poly((R)-3-Hydroxybutyric acid)) (PHB) Blends -- 2.3.1.6 PLA Blended with Poly(methyl methacrylate) (PMMA) and Poly(methyl acrylate) (PMA) -- 2.3.1.7 PLA/Poly(4-vinylphenol) (PVPh) Blends -- 2.3.1.8 PLA Blended with Poly(butylene succinate) (PBS) and Poly(ethylene succinate) (PESu) -- 2.3.1.9 PLA Blended with Poly(propylene carbonate) (PPC) and Poly(trimethylene carbonate) (PTMC).

2.3.1.10 PLA/Poly(styrene) (PS) Blends -- 2.3.1.11 PLA Blended with Other Polymers -- 2.3.1.12 PLA Blended with Other Copolymers -- 2.3.2 Blends Containing Poly(e-caprolactone) (PCL) -- 2.3.3 Blends Containing Poly(hydroxy butyrate) (PHB) -- 2.3.4 Blends Containing Poly(p-dioxanone) (PPDO) -- 2.3.5 Blends Containing Poly(glycolic acid) (PGA) or Polyglycolide -- 2.4 Revision of Blends Based on Natural Polymers -- 2.4.1 Blends Containing Starch -- 2.4.2 Blends Containing Cellulose -- 2.4.3 Blends Containing Chitosan -- 2.4.4 Blends Containing Collagen -- Appendix 2.B List of Abbreviations and Nomenclature -- 2.B.1 Chemical Terms -- 2.B.2 Polymers and Copolymers -- 2.B.3 Notations -- 2.B.4 Symbols -- 2.B.5 Greek Letters -- Acknowledgments -- References -- 3 Thermodynamics and Morphology and Compatibilization of Polymer Blends -- 3.1 Introduction -- 3.2 Thermodynamics of Polymer Blends -- 3.2.1 Enthalpy of Mixing -- 3.2.2 Entropy of Mixing -- 3.2.3 Flory-Huggins Theory -- 3.3 Phase Behavior of Polymer Blends -- 3.3.1 Phase Diagrams -- 3.3.2 Phase Separation -- 3.3.3 Interfaces in Polymer Blends -- 3.4 Morphology of Polymer Blends -- 3.4.1 Morphology Development During Melt Processing -- 3.4.2 Stability of Blend Morphology -- 3.5 Compatibilization of Polymer Blends -- 3.5.1 Morphology Development in Compatibilized Blends -- 3.5.2 Compatibilization Techniques -- 3.5.2.1 Addition of Preprepared Copolymer -- 3.5.2.2 Addition of Reactive Polymer -- 3.5.2.3 Addition of Reactive Low-Molecular-Weight Compounds -- 3.5.2.4 Other Compatibilization Techniques -- References -- 4 Characterization of Polymer Blends: Rheological Studies -- 4.1 Introduction -- 4.1.1 General Description of Thermoset Rheological Behaviors -- 4.1.2 Thermosetting Resins: Gelation, Vitrification, and Viscoelasticity -- 4.1.3 Methods of Rheological Measurement.

4.2 Thermosetting Blend Systems with Rubbers and Thermoplastics -- 4.2.1 Phase Separation and Rheological Behavior of Rubber-Modified Systems -- 4.2.2 Phase Separation and Rheological Behavior of Thermoplastic-Modified Systems -- 4.2.3 Viscoelastic Properties of the Blends -- 4.2.4 Gelation Behaviors of the Blends -- 4.3 Thermosetting Systems with Nanostructures -- 4.4 Conclusions -- References -- 5 Characterization of Phase Behavior in Polymer Blends by Light Scattering -- 5.1 Introduction -- 5.2 Amorphous/Crystalline Polymer Blends -- 5.3 Light Scattering -- 5.4 Cloud-Point Determination -- 5.5 Time-Resolved Light Scattering -- 5.5.1 Immiscible Blends -- 5.5.2 Spinodal Decomposition -- 5.5.3 Crystallization by Hv Light Scattering -- 5.5.4 Model Blend of Poly(ε-Caprolactone) (PCL) and Poly(Styrene-co- Acrylonitrile) (SAN) -- 5.5.5 Samples Preparation -- 5.5.6 Phase Separation and Phase Dissolution in Poly(ε-Caprolactone)/ Poly(Styrene-co-Acrylonitrile) Blend -- 5.5.7 Crystallization Kinetics by Optical Microscopy and by Hv Light Scattering -- 5.5.8 Competition of Phase Dissolution and Crystallization -- 5.6 Determination of Virtual UCST Behavior -- 5.6.1 Evaluation of Particle Size in Immiscible Blends -- Acknowledgments -- References -- 6 Characterization of Polymer Blends by X-Ray Scattering: SAXS and WAXS -- 6.1 Introduction -- 6.1.1 Development of SAXS Techniques for Polymers -- 6.1.2 Instrumentation and the Synchrotron Advantage -- 6.2 Basics of X-Ray Scattering -- 6.2.1 Elastic Scattering of Electromagnetic Radiation by Single Electron -- 6.2.2 Scattering by Assembly of Electrons: Scattering Geometry and Interference -- 6.2.3 Scattered Intensity -- 6.3 Small- and Wide-Angle X-Ray Scattering (SAXS and WAXS) -- 6.4 Polymer Blend Morphology -- 6.4.1 Blends of Homopolymers -- 6.4.1.1 Structural Characterization: SAXS Data.

6.4.1.2 Crystallinity: WAXS Data -- 6.4.2 Blends of Block Copolymers -- 6.4.3 Time-Resolved Studies: Kinetics of Crystallization and Melting -- 6.5 Conclusions -- References -- 7 Characterization of Polymer Blends and Block Copolymers by Neutron Scattering: Miscibility and Nanoscale Morphology -- 7.1 Introduction -- 7.2 Small-Angle Scattering -- 7.2.1 Contrast -- 7.2.2 Scattering Function -- 7.2.3 Gaussian Chain -- 7.3 Thermodynamics of Polymer Blends and Solutions. Flory-Huggins Theory -- 7.4 The Scattering Function and Thermodynamics -- 7.4.1 The Forward Scattering -- 7.4.2 Random Phase Approximation (RPA) -- 7.4.3 Beyond Mean Field -- 7.5 Block Copolymers -- 7.5.1 Ordered Phases -- References -- 8 Ultrasound in Polymer Blends -- 8.1 Introduction -- 8.2 High-Frequency Ultrasound -- 8.2.1 Static Characterization -- 8.2.1.1 Miscibility of Solution Blends -- 8.2.1.2 Compatibility -- 8.2.1.3 Density -- 8.2.1.4 Phase Inversion -- 8.2.1.5 Molecular Orientation -- 8.2.2 In-Line Monitoring -- 8.2.2.1 Morphology -- 8.3 Power Ultrasound -- 8.3.1 Injection Molding -- 8.3.1.1 Weld Line Strength Improvement -- 8.3.2 Batch Melt Mixing -- 8.3.2.1 Compatibilization -- 8.3.3 Extrusion -- 8.3.3.1 Molecular Weight Control -- 8.3.3.2 Tensile Properties Enhancement -- 8.3.3.3 Compatibilization -- 8.3.3.4 Rheological Modification -- 8.3.3.5 Morphology Control -- 8.3.3.6 Die Swell Reduction -- 8.4 Summary -- References -- 9 Characterization of Polymer Blends: Ellipsometry -- 9.1 Ellipsometry -- 9.1.1 Principles of Ellipsometry -- 9.1.2 Thickness and Optical Properties of Layers on Solid Supports -- 9.1.2.1 Linear EMA -- 9.1.2.2 Maxwell-Garnett EMA -- 9.1.2.3 Bruggeman EMA -- 9.1.3 Depth Profiling -- 9.1.4 Sample Preparation -- 9.1.5 Types of Instrument and Measurements -- 9.1.5.1 Spectroscopic Ellipsometry, Real-Time Measurement.

9.2 Applications in the Characterization of Polymer Blend Films -- 9.2.1 Phase Separation in Thin Polymer Blend Films -- 9.2.2 Analysis of Interfacial Thickness and Interfacial Reaction -- 9.2.2.1 Miscibility -- 9.2.2.2 Reactive Compatibilization -- 9.2.3 Morphology, Roughness, and Pattern Formation in Nanolayers -- 9.2.4 Biomaterial Surfaces -- 9.2.5 Surface Modification, Adsorption from Solution -- 9.2.5.1 Biomaterial Blends -- 9.2.5.2 Distribution and Release of Drugs -- 9.2.6 Composite Layers for Organic Solar Cells -- 9.3 Concluding Remarks -- Acknowledgments -- References -- 10 Inverse Gas Chromatography -- 10.1 Concept and History of Inverse Gas Chromatography (IGC) -- 10.2 Theoretical Background -- 10.3 Thermodynamic Aspects: Parameters Used for Polymer Blend Characterization -- 10.3.1 Flory-Huggins Interaction Parameter for Polymer-Test Solute Systems -- 10.3.2 Flory-Huggins Interaction Parameter for "Multiple" Systems -- 10.4 Procedures Used in IGC Experiments Leading to the Determination of Polymer Blend Characteristics -- 10.5 Application of Chemometric Methods -- 10.6 Transport Properties of Polymeric Mixtures -- 10.7 Usefulness of IGC: Applications of IGC-Derived Parameters in the Characterization of Various Systems -- 10.8 Advantages and Drawbacks of IGC -- References -- 11 Thermal Analysis in Polymer Blends -- 11.1 Introduction to Polymer Blends -- 11.1.1 The Principle of Polymer Blending -- 11.2 Experimental -- 11.2.1 System 1: PVC/PEO Blends -- 11.2.2 System 2: PVC/PEO:LiCF3SO3 Blends -- 11.2.3 System 3: PVC/PEO-LiCF3SO3-DBP:EC Blends -- 11.2.4 System 4: PVC/PEO-LiCF3SO3-DBP-EC:SiO2 Blends -- 11.3 Instrumentation -- 11.3.1 Sample Weight -- 11.3.2 Testing Temperature Range -- 11.3.3 Gas Environment -- 11.3.4 Heating Rate -- 11.4 Thermal Analysis -- 11.4.1 Information Obtained from TGA -- 11.4.2 Thermal Process.

11.4.3 The Value of the TGA Information.
Abstract:
Filling the gap for a reference dedicated to the characterization of polymer blends and their micro and nano morphologies, this book provides comprehensive, systematic coverage in a one-stop, two-volume resource for all those working in the field. Leading researchers from industry and academia, as well as from government and private research institutions around the world summarize recent technical advances in chapters devoted to their individual contributions. In so doing, they examine a wide range of modern characterization techniques, from microscopy and spectroscopy to diffraction, thermal analysis, rheology, mechanical measurements and chromatography. These methods are compared with each other to assist in determining the best solution for both fundamental and applied problems, paying attention to the characterization of nanoscale miscibility and interfaces, both in blends involving copolymers and in immiscible blends. The thermodynamics, miscibility, phase separation, morphology and interfaces in polymer blends are also discussed in light of new insights involving the nanoscopic scale. Finally, the authors detail the processing-morphology-property relationships of polymer blends, as well as the influence of processing on the generation of micro and nano morphologies, and the dependence of these morphologies on the properties of blends. Hot topics such as compatibilization through nanoparticles, miscibility of new biopolymers and nanoscale investigations of interfaces in blends are also addressed. With its application-oriented approach, handpicked selection of topics and expert contributors, this is an outstanding survey for anyone involved in the field of polymer blends for advanced technologies.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: